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Abstract

Maintaining computer security is an ever present problem in today’s increas-

ingly connected world. As computer architectures increase in complexity to support

the needs of ever more complex applications, it is becoming more difficult to protect

against misuse and attack. Software-based security monitoring mechanisms have been

implemented, however, these are circumventable, have slow time-to-detect, and de-

grade performance of the system being monitored. To overcome these shortcomings,

our research focuses on moving security-related monitoring mechanisms from software

to hardware.

This research explores how hardware-based primitives can be implemented to

perform security-related monitoring in real-time, offer better security, and increase

performance compared to software-based approaches. In doing this, we propose a

novel computing architecture, derived from a contemporary shared memory architec-

ture, that facilitates efficient security-related monitoring in real-time, while keeping

the monitoring hardware itself safe from attack. This architecture is flexible, allowing

security to be tailored based on the needs of the system. We have developed a number

of hardware-based primitives that fit into this architecture to provide a wide array

of monitoring capabilities. A number of these primitives provide capabilities, such as

multi-context monitoring and virtual memory introspection, that were not previously

possible at the hardware level. Not only does this allow for more robust security-
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related monitoring when compared to software-based approaches, it also allows the

security-related monitoring concepts presented in this research to be applied across a

broad range of computing environments.

A number of these primitives are implemented in the context of our architec-

ture. Experimentation with these prototypes validated our approach and demon-

strated real-time performance. However, due to the limitations of current computer

architectures, a number of the primitives could not be implemented. In these cases,

we describe what is needed for these concepts to be implemented and argue why

these primitives will function correctly. Therefore, this research shows that security-

related monitoring tasks can be moved from software to hardware in a way that se-

curity, system performance/usability, and time-to-detect are all improved compared

to software-based methods.
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Exploring Hardware-based Primitives to Enhance

Parallel Security Monitoring in a Novel Computing

Architecture

I. Introduction

A
dding certain functional primitives to current computer architectures will

leverage previously unavailable knowledge of system state at the hardware

level. This allows for increased computer security with less performance overhead

than previously proposed methods, while still maintaining strong security for the se-

curity mechanisms themselves. In this paper, we discuss our research that has allowed

us to make such claims.

1.1 Background and Problem Overview

Computer security is an ever present problem in today’s connected world. Every

year the reported instances of vulnerabilities in software grows and there seems to be

no end in sight [10]. The computing industry is aware of this and tries to implement

good programming practices, create safer programming constructs, as well as modify

how operating systems interact with the processes they coordinate. However, pro-

grammers are only human and are bound to make mistakes, no matter how strong

their resolve is to create non-exploitable code. Furthermore, as code becomes more

complex to solve increasingly complicated problems, vulnerabilities are more difficult

to prevent. This is in large part due to abilities afforded by the current computer
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architecture paradigm - the primary design goal of which has been to improve per-

formance, not security. As such, hardware in recent years has begun to implement

changes to contemporary processor architectures that help to prevent certain security

exploits such as buffer overflows. However, current hardware-based security tech-

niques implemented in commercial processors are far from exhaustive solutions. As

a result, we need more robust security in today’s computing systems, but increased

security introduces a number of problems.

Adding security to a system does not come for free. Increased security typically

increases cost in terms of performance as well as usability. Moreover, there is usually

a distinct inverse relationship between performance/usability and the level of security

a system can provide. That is, a system with a high level of security does so at the

expense of lower performance, and vice versa. This is due to the sharing of resources

between security-related and non-security-related tasks. Thus a shift towards using

dedicated hardware to monitor another processor for security purposes is needed.

A large amount of research has already been conducted on security mechanisms

that utilize dedicated hardware - much of which is described in Chapter II. These

mechanisms all leverage hardware to process state information, but may differ in how

such state information is gathered. Some hardware monitors gather state information

in software, whereas others gather system state at the hardware level. Each way of

gathering state has its advantages and disadvantages which result from the level of

the abstraction that the gathered state information corresponds to. State information

at the hardware level is seen only as instructions, data, and control signals. As such,

2



state gathered at the hardware level corresponds to the lowest level of abstraction.

State information gathered at the software level corresponds to a higher abstraction

level. It is this higher level of abstraction that allows software-based techniques to

better correlate the gathered state to what the monitored code is actually doing,

putting the monitored state into context easier. Context can be and is determined for

state information gathered at the hardware level as well, however, it is more difficult

to do so than using software-based methods.

Hardware-based security monitors that gather state at the hardware level can

gather state in real-time (as it is implemented in hardware), but due to the lack of

abstraction at this level, it is difficult to determine the context of the state information

gathered (i.e., what the state actually means in relation to the system). This typically

limits the kinds of monitoring that these mechanisms can perform as well as limits

the environments they are normally applied to. Hardware-based security monitors

that gather state information at the software level retrieve state information that can

inherently contain more contextual information. As a result, such mechanisms can be

applied in more complex computing environments. However, this higher abstraction

level (i.e., greater context) is gained by the monitoring software being tightly coupled

to the code it is monitoring. This tends to decrease performance of the monitored

system as well as decrease the security of the monitoring system/mechanism itself,

however.

3



1.2 Research Goals

Our research specifically targets the aforementioned issues by exploring ways

in which we can alter the currently accepted computer architecture model in an ef-

fort to increase computer security. This is accomplished by breaking through the

limitations that current computing architectures impose by providing new methods

by which useful system state information can be revealed and processed in parallel,

enabling real-time security-related monitoring. We have developed a novel computing

architecture derived from a contemporary shared memory multiprocessor model that

provides for the implementation of a number of functional primitives in hardware that

we leverage to be able to provide such capabilities while maintaining compatibility

with the current computing model.

To help facilitate better overall system security, we intend to increase the se-

curity of the monitoring hardware itself. By protecting the monitoring hardware, we

can ensure the correct operation of the monitoring hardware to a greater degree than

software-based monitoring methods. We plan to accomplish this by tightly coupling

the monitoring hardware to the hardware executing the monitored code in order to

gather context-rich state information, rather than coupling the monitoring software to

the software being monitored. This allows the monitoring system to remain as trans-

parent to the monitored system as possible. Consequently, we minimize the attack

surface of the monitoring hardware itself, reducing the chance that the monitoring

system can be compromised [38].

4



Monitoring with dedicated hardware allows code to be monitored parallel as it

executes on the monitored processor, which should enable a real-time security moni-

toring capability. Additionally, as we intend to keep software coupling to an absolute

minimum, we believe little to no added overhead will be imposed on the system com-

pared to systems that couple the monitoring software to the monitored code more

tightly. As a result, no more than a minimal impact on the system’s usability would

likely occur.

1.3 Contributions

In working towards our research goals, we make a number of contributions.

They are as follows:

• Developed a novel, security-oriented computing architecture which is flexible,

secure, and extensible. The architecture is specifically designed to allow context-

rich state information to be gathered, while keeping the monitoring hardware

as secure as possible.

• Created a categorization of monitoring system security. This benefitted our

research when designing our architecture to provide the best balance of security

and capabilities for the monitoring hardware.

• Designed a number of functional primitives that fit into the architecture. All

primitives are based in hardware and can provide monitoring in real-time. It

should also be mentioned that many of the primitives are complementary to

each other and can be implemented together in varying combinations. Thus,

5



security can be be tailored to a particular application’s needs. The primitives

are briefly described below.

Multi-context Hardware Monitors: This primitive allows the monitoring

hardware to be able to discern between different processes executing on

the monitored processor - a capability previously not possible at the hard-

ware level. As a result, hardware-based monitoring mechanisms can be

implemented in a broader range of computing environments.

Execution Policy Enforcement Module: This primitive prevents malicious

code from executing. Although some computing architectures contain this

capability, this primitive can add such a capability to processors that do

not natively support it.

Peripheral Access Control: This primitive ensures that processes do not ac-

cess system devices that they were not originally intended to access.

Asymmetrically Partitioned Main Memory: This primitive allows mem-

ory to be shared in an asymmetric manner. This provides the monitoring

system with visibility into the physical memory space of the monitored

processor, while preventing the monitored processor from having visibility

into the monitoring system’s memory space.

MMU Co-opting: This primitive provides the monitoring hardware with vis-

ibility into the virtual memory space of the process that is currently ex-

ecuting on the monitored processor - a capability previously not possible
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at the hardware-level. As a result, certain forms of monitoring, such as

invariant checking, can be performed on both user-level and kernel-level

processes.

Monitoring Using Multiple MMUs: This primitive enables the same capa-

bilities as MMU co-opting, however, it can also provide visibility into the

virtual memory space of processes not currently executing. This provides

for a number of novel security-related capabilities, such as trusted process

execution (throughout the process’ entire runtime) and real-time deadlock

detection, among others.

• A number of the primitives were implemented to show proof of concept.

While the aforementioned contributions are physical results of our research, we also

make a number of contributions to the security-related monitoring field in general.

They are as follows:

Time-to-Detect: Our primitives can provide for real-time security monitoring. As a

result, the primitives can provide improved time-to-detect compared to software-

based methods.

Hardness of Monitor in the Presence of Malicious Code: The security of the

monitoring system itself can be ensured, to a good degree, in the event that the

monitored system has been compromised by malicious code. As a result, the

monitoring system can continue to function in such a case.
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Types of Inputs to the Monitoring System: We devised new ways to gather state

information at the hardware level. This increases the types of inputs (at the

hardware level) to the monitoring system over previous methods, resulting in

more robust security-related monitoring capabilities.

Range of Monitoring Granularity: Our primitives can allow monitoring granu-

larity ranging from the individual instruction level to the process level. As a

result, this research increases the range of monitoring granularity that can be

provided via hardware-based mechanisms. This allows our primitives to provide

security policy compliance monitoring (SPCM)in a broad range of computing

environments.

1.4 Document Layout

This chapter covered the general area of our research, what problems we are

trying to solve, and why it is important to do so. Additionally, we outline our re-

search goals and detail our contributions. Chapter II describes work done by other

researchers in the same or related fields that we used as a basis in forming our own

work. We present the actual thesis statement, research methodologies, and theories

behind the implementation in Chapter III. Chapter IV covers in detail the actual

implementation of our work, while Chapter V presents the testing methodology, any

applicable simulations, the results, and analysis of the implementation. The conclud-

ing remarks as well as future work areas our research has opened are presented in

Chapter VI. Appendices are also included at the end of the document and contain

8



information not appropriate for the main document such as code created through our

research efforts and tutorials for our development environment.
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II. Related Research Exploration

T
his chapter presents the results of research that we found useful in conduct-

ing our own exploration. We begin by presenting work that classifies and

describes the different forms of intrusion detection (ID). These concepts are then ex-

panded by presenting the different ways intrusion detection systems (IDS) have been

implemented. The section concludes with descriptions of the various hardware-based

security mechanisms that have been proposed thus far.

2.1 Classes of Attack

In order to help describe the various monitoring mechanisms we propose in this

document, it is useful to understand some of the various forms of malicious attacks

and the vehicles employed. While there are countless forms of attack, we attempt to

summarize the different classes of attacks in this section. This is not meant to be an

exhaustive list, but rather a number of attacks that are useful when describing our

work that can be referenced when needed.

2.1.1 Viruses, Worms, and Trojans. CACI International provides a break-

down of various types of computer security threats in [9]. [9] defines viruses as a form

of malicious software that attaches itself to other software within a system. Viruses

are not self-propagating across machines, and thus have no means by which to spread

to another system unless copied to another location by some means external to the

virus itself. Worms are standalone programs that perform some malicious function

within a system. Worms, unlike viruses, have the ability to propagate themselves to
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other systems via a network. Trojans are malicious software masquerading as useful

software. Trojans can be implemented as a worm (self propagating) or as a virus that

is attached to a piece of software prior to distribution. While viruses, worms, and

trojans are all slightly different, they are all related in that they actively execute code

in an unintended fashion. They act as the basic tools to perform malicious activities

within a system.

2.1.2 Rootkits. The formal definition of a rootkit reads, “A rootkit is a set

of software tools intended to conceal running processes, files or system data from the

operating system” [57]. Although rootkits can be used for non-malicious purposes,

we are only concerned with the malicious use of rootkits. Rootkits are typically used

by attackers to keep “root” access to a computer system - the highest privilege level

- and hide their activities in order to prevent detection by a system administrator.

Rootkits are typically installed onto a computer via a security vulnerability and are

very noticeable the first time the attacker gains root level access. Once installed, the

rootkit cleans evidence of its initial entry and provides an exploit (i.e., a backdoor

in many cases) to the system using common commands that have been modified into

trojans. These backdoors allow the attacker to continue to access the system without

being noticed [7]. As rootkits can provide a means for an attacker to have complete

control over an entire computer system while making detection difficult, rootkits have

become regarded as highly dangerous, making rootkit defense a very active area of

research.
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2.1.3 Timing-based Attacks. Timing-based attacks are any type of malicious

attack whose operation is intended to focus on a vulnerability associated with the

timing of particular events within a system. For example, some detection systems

only check for malicious activity at specific time intervals. It is possible for an attacker

to target the window of time where the code is not being monitored. Moreover, such

a vulnerability makes it possible for any malicious software used to be removed and

all traces of illegitimate activity to be erased before the monitor is ever invoked [46].

However, for such an attack to occur, the attacker/malicious software must know

when a particular system is vulnerable at a certain point in time in order to exploit

that vulnerability.

2.1.4 Relocation Attacks. A relocation attack relocates the malicious code to

avoid detection. Relocation is done typically to somewhere that cannot be monitored.

For example, malicious code may be detected in memory, so the malicious code is

engineered in such a way that it executes from within a processor’s cache [46]. This

type of attack seems particularly difficult to implement, but it is a possible threat

nonetheless.

2.2 Intrusion Detection Taxonomies & Categorizations

While there are many varying definitions of intrusion detection, we consider

intrusion detection to be the identification of abnormal system behavior given an idea

of what good and/or bad system behavior should be. Despite this singular definition,

there are numerous forms that intrusion detection can take, and a variety of systems
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which operate differently and to different degrees. In order to help others understand

the key differences between these different intrusion detection systems, as well as the

general concepts of intrusion detection and security policy compliance monitoring,

work has been done to classify the features of such systems proposed thus far. The

results pertinent to our research are described below.

2.2.1 Intrusion Detection Systems: A Survey and Taxonomy. In [4], Axels-

son provides a comprehensive breakdown of intrusion detection principles which he

uses to survey and classify numerous intrusion detection systems that have progressed

to the prototype stage of development. He asserts that in order to develop methods to

detect intrusions, one must first know what to look for. This is not as easy a problem

as one might first think, as Axelsson attests to. He points out that not only are some

threats unknown (and hence unforeseeable), but also that even known threats can be

difficult to distinguish from what is considered normal operation. Furthermore, it is

never entirely certain what the source of an attack will be, whether it is an assailant

hacking into a network, a user within the network that is abusing privileges, etc.

Perhaps one of the largest problems when implementing an IDS is the lack of useful

information provided to the IDS.

Knowing the problems associated with designing intrusion detection systems,

Axelsson produced a taxonomy of intrusion detection by generally characterizing in-

trusion detection principles into two main classes: 1) anomaly-based detection and
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2) signature-based detection. This taxonomy, however, can be extended to include a

principle known as specification-based detection, first described by Ko in [31].

• Anomaly-based Detection: According to Axelsson, anomaly-based detection

does not look at the the actual intrusion itself, but rather the reaction of the

process in question to an intrusion [4]. It operates on the assumption that an

intrusion will produce abnormal behavior within a system, and that the abnor-

mal behavior can be considered suspicious. Thus, an anomaly-based intrusion

detector must know what constitutes abnormal behavior, as well as at what

point to deem abnormal behavior as an intrusion.

To determine what is considered normal behavior, Axelsson breaks down anomaly

detection into two types: 1) self-learning and 2) programmed. In the first type

of anomaly detection, the process under scrutiny is run in a safe environment for

an extended period of time. As the process executes, the IDS gathers statistics

on that process’ operation in order to build a model of normal operation for that

process. The system is then placed into use and monitored, signaling a viola-

tion when an event outside of the previously gathered behavior data occurs. The

second type of anomaly detection depends on a system administrator, designer,

and/or user to teach the system specifically what constitutes abnormal behavior

and how to signal a security violation. Thus the user, rather than the system

itself in the self-learning case, determines what constitutes abnormal behavior.
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• Signature-based Detection: Signature-based detection (also known as misuse

detection) relies on the user to provide a model of an intrusive event to the

intrusion detection system. A signature-based detector will look for known

specific clues left behind from an intrusive process in order to determine if

an intrusion has occurred. With that said, signature-based detectors detect

intrusions irrespective of what the normal behavior for the system is. Thus,

even normal behavior can flag a security violation if such behavior matches a

provided model of illicit activity. As such, the models used for a signature-based

detector must be very precise so as to ensure low false positive rates.

Since signature-based detectors rely on models of known threats, intrusion de-

tection systems using this principle can only be programmed to know what to

look for. This can be done via state modeling, expert-system, string matching,

or a simple rule-based method. State modeling consists of a number of states

occurring within a system which indicates whether an intrusion has taken place.

An expert-system reasons about the security state of the system given rules that

describe intrusive behavior. String matching is an inflexible, yet simple means

to detect intrusions via comparing substring text received by the system. The

simple rule-based approach is a less complex version of an expert-system that

often leads to a faster execution.

• Specification-based: Specification-based detection attempts to merge the high

detection rate of signature-based detection with the ability to detect novel at-

tacks of anomaly-based detection [20]. In systems with explicitly defined security
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policies, specification-based detection can be used to detect any deviations from

that security policy. At the time Axelsson’s taxonomy was created, specification-

based detection had not been widely accepted. As noted by Williams in [59],

this is due to a lack of clearly defined security policies at the time, although

more recently that is beginning to change.

Axelsson points out that most intrusion detection systems studied fall into more

than one category. He claims this is not due to his taxonomy being vague, but rather

that many intrusion detection systems created thus far employ multiple intrusion

detection principles. This taxonomy also makes evident two orthogonal concepts

in intrusion detection: 1) anomaly versus signature and 2) programmed versus self-

learning. As Williams notes in [59], with the inclusion of specification-based detection,

the first concept must be modified to anomaly versus signature versus specification.

Axelsson then goes on to classify intrusion detection systems by what type of

intrusion they most readily detect. From this, three forms of intrusion are derived:

1. Well-known Intrusions: Intrusions that exhibit a static and well defined pattern.

These generally take little work to detect.

2. Generalizable Intrusions: Intrusions that allow for some degree of variability in

how they are executed. These often exploit a general flaw or set of flaws in a

process rather than than a specific vulnerability.
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3. Unknown Intrusions: Intrusions that have a very weak coupling to a specific

flaw or an extremely general flaw. Thus, the intrusion detection system does

not necessarily know what to expect.

Axlesson ends with a taxonomy of system characteristics. This is very similar to

some characteristics described in Kuperman’s Ph.D. work in [33]. One characteristic

that is of importance to this research, but not present in Kuperman’s work (See

Subsection 2.2.2 for the other characteristics) is processing granularity. The processing

granularity of an intrusion detection system describes how much and/or how fast data

is processed by the intrusion detection system. The two main categories are batch

granularity and continuous granularity. Batch granularity processes data in chunks.

This helps to decrease overhead of the intrusion detection system, but can add to the

time to detect. Conversely, continuous granularity processes all data as it is produced.

This can impose a large overhead to the system being monitored, but generally has

better time-to-detect compared to a similarly configured intrusion detection system

using batch processing granularity. Since this affects the effectiveness and speed of

detection, careful attention must be paid to this characteristic in our research.

2.2.2 A Categorization of CSM Systems and The Impact on The Design of Au-

dit Sources. Kuperman presents a characterization of computer security monitors

(CSM) in [33]. His work includes characteristics of such computer security monitors

which are of importance to our work. Two characteristics - the goal of detection and

the timeliness of detection - were found to be of importance to Williams’ previous
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work in [59]. As our research is based heavily on Williams’ research, these character-

istics are also of importance to our research and are described below. Furthermore,

for our work we add a new characteristic to these - Monitoring System Security - and

is also described below.

2.2.2.1 Goal of Detection. In order to categorize security monitoring

systems, Kuperman first asks the question For what security purpose is this system

monitoring behavior? To answer this question, he identifies a number of major areas

of focus within the computer security monitoring field. These areas are described

below:

• Detection of Attacks: Detects attempts to exploit a specific vulnerability in a

computer system. Attacks can be in the form of a virus, trojan, etc. and are

intended to cause harm to the system or use it in an illegitimate manner.

• Detection of Intrusion: Relies on the notion of legitimate users of a specific

computer system. Intrusions can be external to the system (e.g., over a network

connection) or internal to the system (i.e., from the system itself but by an

unauthorized user). This is also known as an intrusion detection system.

• Detection of Misuse: Similar to detection of intrusion, however, the misuse being

detected is by an authorized user of the system. Thus, no intrusion is committed

nor detectable, but illegitimate actions are detected.

• Computer Forensics: Gathering of data to reconstruct previously occurred ac-

tivities on a system. This could be used to determine if, when, and how an
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attack, intrusion, or misuse occurred, but can also be used for other legitimate

actions such as message verification or the tracking of changes made by the

computer’s administrator.

Our research primarily focuses on the detection of attacks, intrusion, and misuse.

Although our work can also apply to computer forensics applications, that is outside

the scope of our research for the time being.

2.2.2.2 Timeliness of Detection. Another way Kuperman categorizes

CSM systems is by the timeliness of detection. He proposes a view of the overall

system as an ordered set of events. Thus, detection times are described in logical

time, rather than temporal time. Using Kuperman’s notation, the set of all events

taking place in a system is denoted as E. The set of suspect events B is a subset such

that

B ⊆ E (2.1)

and there exists events a, b, and c such that

a,b,c ∈ E (2.2)

b ∈ B (2.3)

The time at which event x occurs is denoted by tx. The notation x −→ y denotes

that the event y is causally dependent on the event x. Unless otherwise noted, we
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assume the dependence of events occurs in alphabetical order as

a −→ b −→ c (2.4)

ta < tb < tc (2.5)

Furthermore, it should be mentioned that a may not necessarily be the cause of b

and so on. Lastly, the detection function, D(x), is used to determine the truth of the

statement x ∈ B.

Using the terminology mentioned above, Kuperman describes four main timeli-

ness categories in his CSM categorization. These categories are described below:

• Real-time Detection: Detection of a bad event b takes place while the system

is operating and is further restricted to mean that detection of b occurs before

any events that are dependent on b take place. As a result, real-time detection

requires the ordering

tb < tD(b) < tc (2.6)

• Near Real-time Detection: Detection of b occurs within some finite time δ of

the occurrence of b. Thus, near real-time detection requires the ordering

|tb − tD(b)| ≤ δ (2.7)
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• Periodic: Event records are analyzed by a security system once every time

interval p where p is ordinarily on the order of minutes or hours. Furthermore,

the detection must take place before the next set of event records is analyzed in

order to prevent an increasing backlog of events causing the security system to

fail. This results in the ordering

tD(b) ≤ tb + 2 ∗ p (2.8)

• Retrospective: Detection of bad events takes place outside of any particular

time bounds. Analysis operations typically take place using archived events.

The CoProcessor Intrusion Detection System (CuPIDS) architecture that our

work is based upon improves the detection rate over a standard uniprocessor intru-

sion detection system (StUPIDS) for the same detection function D(x) by being able

to perform detection within Kuperman’s real-time detection category [59]. This is

due to security monitoring occurring in parallel as the monitored code executes. As

our functional primitives perform security monitoring in a similarly parallel manner,

they can perform detection within Kuperman’s real-time detection category as well.

However, our more hardware-centric methods reduce the detection function’s reliance

on software-based methods for process-monitor communications. Not only does this

guarantee real-time detection, but also provides an improvement in time-to-detect

and detection efficiency over CuPIDS.
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2.2.3 Monitoring System Security. A monitoring system can be categorized

according to how it provides security for a system, however, there has been no cat-

egorization for the security of the monitoring system itself. While overlooked, the

security of the monitoring system itself is critical, as the entire system can become

vulnerable to attack if the monitoring system itself is compromised. As such, we add

our own categorization of monitoring system security to what Kuperman has already

proposed in [33]. There are eight levels of monitoring system security ranging from

least secure to most secure, each of which is described below.

• Open: The monitored system has knowledge of and explicitly coordinates and

shares state information with the monitor. No security mechanisms are present

to protect the monitor from being compromised. This is the worst case. Moni-

tors at this security level tend to be uniprocessor host-based intrusion detection

systems which are discussed in Section 2.3.

• Soft Security: The monitored system has knowledge of and explicitly coordinates

and shares state information with the monitor. The monitor is secured only by

software techniques. The monitor can be compromised without having to first

compromise the monitored system. As with the open security level, monitors

with this security level tend to be uniprocessor host-based intrusion detection

systems which are discussed in Section 2.3.

• Passive Security: The monitored system is not necessarily aware of the moni-

tor. Any vulnerability to the monitor is by virtue of how it actually performs
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monitoring. As such, information about how the monitor actually operates on

gathered state data must be known. Most network IDSs can be considered pas-

sively secure as they only monitor network traffic, however, the network traffic

can contain information that can actually disable the network IDS when it is

processed. Such IDSs are discussed in Section 2.4.

• Self Security: The monitored system has knowledge of and explicitly coordinates

and shares state information with the monitor. By virtue of how the monitor

operates, it provides itself with security. Thus, the monitored system must first

be compromised before the monitor itself can be compromised. Software-based

techniques can also be used to enhance the security of a self secure monitor.

CuPIDS presented in [59] and discussed in 2.6.3.1 is one such system at this

monitoring system security level.

• Loose-hard Security: The monitored system has knowledge of and explicitly

coordinates and shares state information with the CSM. Dedicated hardware

mechanisms or a combination of hardware and software techniques exist to pro-

tect key portions of the CSM from being compromised. Hardware-based return

address stacks (presented in [34]) are an example of a type of monitor with this

level of security and are discussed further in Section 2.7.1.

• Semi-hard Security: The monitored system has very little or no knowledge of

the monitor. As such, the monitor can not be executing on the same processor

core as the software being monitored and hardware must be used for commu-

nications. The monitored system explicitly coordinates with the monitor via
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mechanisms like unmaskable interrupts, but is kept to a minimum. The mon-

itored system’s state information is implicitly communicated to the monitor.

The monitor cannot be compromised via the system being monitored, but it

can be worked around if code controlling synchronization signals to the moni-

toring is altered (i.e., the monitor will not know when or how to monitor). If

this occurs, the monitor can still operate, albeit in a diminished capacity. This

is the monitoring system security level that our own work specifically targets.

• Strict-hard Security: The monitored system has very limited or no knowledge of

the monitoring system. As such, the monitor can not be executing on the same

processor core as the software being monitored and hardware must be used for

communications. The monitor only observes the operation of the system and

has to know when and where to gather specific state information. As such, the

operation of the monitor has no dependence on the monitored system. Only

a system admin can explicitly communicate with the monitor via a dedicated

hardware path such as a communications (COMM) port that only the moni-

tor has access to. CoPilot (presented in [46]) and the Independent Auditors

(presented in [40]) are two such systems at this CSM security level. They are

discussed further in Section 2.6.2.

• Complete Security: This is the ideally secure case. The monitoring system has

no contact with the outside world, hence it is self defeating as the system would

be completely unusable (i.e., an impenetrable lead box).

24



While each level of monitoring system security is generally considered more

secure than the previous, in many cases there tends to be a tradeoff between the

security of the monitor and the ease by which state information can be gathered for

monitoring purposes. For example, we consider soft security to allow for easier state

retrieval since a monitor with soft security tends to closely couple the monitoring soft-

ware to the software it is monitoring. Semi-hard security can be considered as having

more difficulty gathering state information than monitors with soft security because

the monitoring software is completely independent of the software it is monitoring.

It should be noted that increased difficulty in gathering state information does not

necessarily translate into less overall monitoring functionality as monitoring systems

with strict-hard security can provide monitoring that soft-secure monitoring systems

cannot. However, there becomes a point where the amount of security actually ham-

pers the kinds of monitoring that can be performed. We consider this point to be at

the strict-hard security level. As a result, our work specifically targets the semi-hard

security level as it provides the monitoring system with the most security while still

allowing for some explicit communication - which aids in gathering context-rich state

information - used to synchronize the monitor with the monitored system - a critical

ability for our parallel monitoring techniques.

2.3 Uniprocessor-based Host Intrusion Detection

Host-based intrusion detection systems were the first form of intrusion detection.

Some examples include Haystack, Tripwire, NIDES, Janus, and IDIOT presented in [1,
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18, 27, 32, 52], respectively. Host-based intrusion detection systems are characterized

by the fact that the intrusion detection system executes on the same hardware as

the code that it monitors. In traditional (i.e., earlier) host-based IDSs, the IDS was

integrated into the host operating system (OS) or other software being monitored.

This close coupling of the IDS and the code that it monitors is the source of both

its greatest strength as well as its greatest weakness. As monitoring code executes

on the same hardware as the production code, a host-based IDS allows the easiest

access into “context-rich” system state and audit data. However, if an intrusion does

actually occur, the intrusion detection system itself is made vulnerable to attack due

to its integration with the production software. If the IDS is compromised, the result

of such an attack may not even be detectable, leaving a false sense of system security.

As a result, most host-based intrusion detection systems fit into either the open or

soft monitoring system security levels.

Overall host performance as well as IDS efficiency are also affected by the mon-

itor and production code sharing hardware resources. This is due to interleaving

execution of the production code and the monitoring code because only one process

can be executing on a uniprocessor at any given time. As a result, multiple processes

may be scheduled to execute after an intrusion occurs, allowing the malicious code

time to damage the system before the monitoring process can execute. Additionally,

granularity is reduced in some cases as the previous scenario also allows for certain

types of attacks to erase all traces of their existence prior to the monitor executing,

rendering the intrusion completely undetectable [59].
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More recently, host-based intrusion detection systems have seen a resurgence

in popularity. One such effort is the BlueBox system presented by Chari and Chang

in [11]. BlueBox is a policy-driven host-based IDS. Rather than specifically monitor

an executing process, BlueBox modifies the core OS of the system such that every

system call must first be checked with a binary rule file before it can be invoked. This

ensures that no illegitimate system calls can be made by a process unless it specifically

has been given permission in its execution policy. As such, every process requires its

own set of rules and the security policy effectiveness is reliant on how well the policy

is defined by the system administrator creating the policy.

2.4 Network-based Intrusion Detection

Network-based intrusion detection systems have also been an active area of re-

search. They are characterized by analyzing network traffic for known attacks. Details

of such examples can be found in [6, 12, 13, 22, 35, 53, 58]. Whereas host-based intru-

sion detection systems attempt to protect only one system, a single network intrusion

detection system can protect an entire group of systems from attacks. Network IDSs

are usually placed prior to a gateway to a network, but distributed network IDSs

have been implemented for more complex networks. This also means that unlike

host-based systems, the intrusion detection system executes in different hardware, as

only network traffic is monitored. This keeps the monitoring hardware separate from

what is being protected, thus most network intrusion detection systems would seem

to fit best into the strict-hard security level. Despite this, however, it has been proven
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that a umber of network IDSs can be defeated by sending malformed packets and/or

particular packet streams across the network which causes the detection mechanism

to fail when such packets are analyzed [47]. As a result, many network IDSs only

passively secure. Additionally, the separation of the hardware from what is being

monitored also traditionally makes the implementation of network IDS easier and

more scalable than host IDSs. This is because a network IDS can simply be placed on

the network prior to the gateway to the network being protected, whereas a host IDS

has to be integrated within a system and correctly interact with the entire system. It

is this better scalability and ease of implementation that have made network-based

intrusion detection popular in recent years.

Due to the ease of prototyping, using Field Programmable Gate Arrays (FPGA)

to implement network-based intrusion detection systems makes up a large portion of

the research in the network IDS field. As network-based IDSs only analyze network

traffic, however, detection methods are limited primarily to signature-based detection.

Not only does this limit the effectiveness of network-based ID, but this unfortunately

means that much of the research into network-based intrusion detection systems,

including those utilizing FPGAs, has mostly been limited to increasing the speed of

pattern matching algorithms, which implement signature-based detection. This is due

to having to keep up with ever increasing network transmission rates. Thus, there has

not been much development into novel intrusion detection methods within this area of

research. Additionally, the increasing use of encryption when transmitting data over
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the internet is making network-based ID ever more difficult, causing a resurgence in

host-based intrusion detection [11].

2.5 Virtual Machine Monitor-based Intrusion Detection

A virtual machine monitor (VMM) is an abstraction layer interposed between

an operating system and the underlying hardware that supports it. The purpose of a

VMM is to mimic the interface between the OS and hardware so that the VMM can

monitor and control how an OS interacts with hardware. This allows the VMM to

treat an entire OS as a separate thread of execution, thus transparently enabling the

execution of multiple operating systems on the same hardware simultaneously and

independently.

A few attempts have been made thus far to leverage the simultaneous and

seemingly independent environment that VMMs can provide. Livewire, proposed by

Garfinkel et al. in [17], and ISIS, proposed by Litty in [37], are two such efforts. Both

systems treat the intrusion detection mechanism as a guest OS executing “simulta-

neously” with the host operating system on top of the VMM layer. The VMM layer

serves as a common interface from which the guest OS can view state information of

the host OS. According to Garfinkel, such an intrusion detection architecture com-

bines the main advantages of both host-based and network-based intrusion detection

systems - good visibility into the host’s state, while maintaining the security of the

intrusion detection mechanism.
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While VMM based systems can leverage these advantages to some extent, draw-

backs still remain. First and foremost is the fact that the so called independence

afforded by a VMM is almost entirely software-based, requiring the host and guest

operating systems to have hooks into the VMM. Thus if the host operating system

is compromised, the VMM as well as the intrusion detection system can potentially

be compromised. Work done by King et al. has even resulted in a method known

as SubVirt which implements a virtual machine-based rootkit (VMBR) [28]. Since a

VMM already has more permissions than the OS it is protecting, a VMBR could be

used to compromise not only the OS being monitored, but the VMM-based IDS as

well. Another drawback to VMM-based IDSs is due to the VMM multiplexing the

execution of multiple operating systems on the same hardware. As such, currently

proposed VMM-based intrusion detection systems are not truly parallel in nature.

Lastly, using a VMM partitions hardware utilization between any operating systems

as well as the VMM itself. This can impose a large overhead when implementing a

VMM-based intrusion detection system, and may make current proposals impractical

due to an overall degradation in system performance.

2.6 Coprocessor-based Intrusion Detection

The goal of coprocessor-based intrusion detection, like VMM-based intrusion de-

tection presented in Section 2.5, is to combine the visibility afforded by uniprocessor-

based host intrusion detection while executing the intrusion detection system in a

parallel and secure manner - the main difference being the use of a dedicated copro-
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cessor to execute the IDS on hardware independent of the hardware/software being

monitored. Coprocessor-based intrusion detection architectures can take many forms

but are typically considered a form of host-based IDS as the coprocessor resides within

the system that it is protecting (this is not a requirement). Work done on coprocessor-

based intrusion detection is an active area of research, and represents the current state

of the art in the intrusion detection field.

A handful of prototype coprocessor-based intrusion detection systems have been

implemented to date. As certain coprocessor-based IDS implementations have some

commonalities, we break up existing implementations into the following three groups

described below.

• Cryptographic Coprocessors: These co-processors protect data by encrypting

and decrypting information being transmitted between system devices, the CPU,

and memory. Thus, if the data is intercepted somehow, the content cannot be

compromised. These devices technically do not perform any intrusion detection

tasks, but rather they ensure data integrity.

• Add-in Coprocessors: Add-in coprocessors monitor the state of the main CPU

over a system bus such as the Peripheral Component Interconnect (PCI) bus.

We term IDSs based on this implementation as “loosely coupled”. This is be-

cause, although such an implementation can monitor system state, the mon-

itoring hardware does not reside at the same logical level as the main CPU,

thus it has no way to exert control of the CPU in the event of an intrusion.
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Furthermore, this also limits the amount of system state that can be gathered

to what a system bus can access.

• Integrated Coprocessors: Integrated coprocessors reside at the same physical

level as the processor it is monitoring. Thus we term them “tightly coupled”.

IDSs based on such an implementation have the ability to exert control over

the CPU being monitored. Additionally, these systems can access system state

information at the CPU level, thus they are not only limited to state infor-

mation that can be accessed via a system bus. Such systems have been en-

abled by the commercial availability of multi-processor systems in recent years,

as well as multi-core processors even more recently. However, little work has

been performed which explores how such architectures can be leveraged to aid

security-related monitoring.

Using this categorization, we describe previously implemented systems that are

relevant to our research below.

2.6.1 Cryptographic Coprocessors. While encryption is primarily involved in

intrusion prevention and protection of sensitive data, we still believe that it is worth

briefly mentioning. Implementing cryptographic coprocessors was the first foray into

using a processor other than the host processor for security related tasks, thus paving

the way for the development of co-processor based intrusion detection systems.

Cryptographic coprocessors can be used to encrypt and decrypt data sent within

a system. This can ensure that if the data is intercepted somehow, be it by a mali-
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cious process or through some other unintended means, the data cannot be accessed.

Many cryptographic coprocessors are implemented as what has been termed “secure

coprocessors”. These coprocessors have a dedicated CPU and access to dedicated

non-volatile storage that can store vital information such as cryptographic keys, sen-

sitive data, logs, etc. in a secure location. These coprocessors have been shown to be

able to handle digital rights management, copy protection, and various e-commerce

applications [39, 49, 74]. Research has also demonstrated that cryptographic copro-

cessors can even be used to make untrustable software, such as a standard standalone

OS, trustable [23].

More recent uses of cryptographic processors have been to create a secure bus

structure within the system. SECA, proposed by Coburn et al in [14], is an example

of such a system that implements a secure bus structure. The cryptographic copro-

cessor is used to encrypt all data sent within the system and only components with

the correct keys can decode that information. While this does not prevent an in-

trusion from occurring, it does ensure that data integrity is maintained in the event

of an intrusion. Commercial availability of such a capability has recently been real-

ized using the trusted platform module (TPM) [5]. Rather than be implemented as

an add-in card in a system, the TPM is integrated into the system’s motherboard

or Northbridge chip. Intel is using the TPM in its LaGrande security technology

to provide cryptographic-based security for protecting sensitive data and peripheral

communications that could lead to an intrusion [24].
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2.6.2 Loosely Coupled Monitoring Coprocessors.

2.6.2.1 Independent Auditors. Molina and Arbaugh present a method

of implementing independent auditors for file system integrity checking in [40]. As the

paper’s name implies, this system audits files to determine if an intrusion has taken

place. The auditing work is performed by a coprocessor implemented on a PCI card

in a standard personal computer architecture. The independent auditor (coprocessor)

logs all changes to the filesystem and performs all auditing calculations to determine

the integrity of the filesystem. Auditing is based on a policy file that defines what files

are to be checked and what parameters are to be verified. The independent auditor

periodically retrieves information pertaining to the files in question and checks them

with the known good values stored in the independent auditor’s local memory. The

independent auditor can also keep secure logs of process activity, measurements, or

other events. This can provide for a computer security forensics capability. The logs

are stored in a trusted state which is ensured by the periodic file system integrity

checks. If an integrity check results in an alarm, the data logged since the last known

trusted state verification is considered to not be trustable.

As this system is implemented as a coprocessor that independently accesses the

host system’s filesystem, all auditing tasks are done in parallel as the host processor

executes. This has little impact on host processor performance, however contention

for the system bus is increased. Information audited is limited to only what can be

gathered via the host processor’s filesystem. Additionally, as the auditing of files is
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periodic, the host is still potentially vulnerable to timing attacks. Despite this, by

the nature of how the independent auditor is implemented and how it accesses state

information, the IDS itself can be considered tight-hard secure.

2.6.2.2 CoPilot. The CoPilot system, developed by Petroni et al.

and presented in [46], is a coprocessor-based IDS that monitors the integrity of a

Linux-based kernel at runtime. This integrity monitoring is achieved by the copro-

cessor having visibility into the host processor’s physical memory space and looking

for changes that are indicative of malicious activity. In the case of the CoPilot sys-

tem, malicious activity is defined as the installation of known rootkits which can

compromise the security of the host processor and the OS.

According to Petroni, there are six requirements that a coprocessor must meet

in order to effectively monitor the integrity of a kernel at runtime:

1. Must have unrestricted memory access in order to view the host processor’s

entire memory space.

2. The monitoring process must be transparent to what is being monitored.

3. The coprocessor must operate independently of the processor that it is moni-

toring.

4. The coprocessor must have sufficient power to process a large number of oper-

ations on memory.
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5. Must contain enough memory resources to keep a consistent memory image of

a non-compromised host

6. Must be able to securely report the state of the system via the use of a dedicated

channel to an admin station.

In order to meet the above requirements, CoPilot uses a coprocessor that resides on

a peripheral component interface (PCI) card. In so doing, the coprocessor can only

receive data via the PCI bus. The PCI bus is afforded access to main memory through

the system’s memory controller which coordinates accesses made to main memory by

the CPU and peripherals residing on the system buses. This allows CoPilot to monitor

the production processor without there being any explicit communication between the

processors themselves. As such, the CoPilot system falls within the tight-hard security

category of our monitoring system security categorization.

Typically, for a device to access main memory, the device’s address must be

translated to a physical address in main memory that the device can then access.

Interestingly though, due to the personal computer-based architecture of CoPilot, the

PCI bus’ address space has a one-to-one mapping to main memory. This allows the

coprocessor to access main memory without the need to have the memory addresses

translated, thus reducing the overall overhead associated with the coprocessor mon-

itoring system memory. Once the coprocessor has access to main memory, it then

monitors specific memory locations for changes to certain invariants. Memory lo-

cations of interest include locations containing kernel text or jump tables of kernel

function pointers. As this does not look for specific symptoms of known rootkits,
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but rather uses anomaly-based detection, this method may detect some previously

unknown rootkits.

The CoPilot system does have some drawbacks, however. Most notably, CoPi-

lot can only monitor memory locations that correspond to fixed pages, limiting mon-

itoring to only those portions of the kernel hard-wired into physical memory. User

processes cannot be monitored due to the dynamic (non-fixed) nature of the virtual

memory subsystem employed in modern multi-programmed operating systems. Fur-

thermore, CoPilot can be circumvented with sophisticated relocation attacks as well

as timing attacks. This is due to the fact that CoPilot only monitors main memory

and only does so every 30 seconds. Monitoring can not be performed faster than every

30 seconds, as bus contention becomes a limiting factor.

While 30 seconds may seem like a small window of time, it is large for a pro-

cessor. For example, consider a superscalar host processor operating at a frequency

of 1GHz with an average of 2.5 instructions per clock (IPC) - a very conservative

configuration by today’s standards. Within a 30 second time frame on such a sys-

tem, 75 billion instructions on average will have executed! To put this in perspective,

the SQLSlammer worm that was one of the most devastating Internet attacks of all

time - it brought down 5 of the 13 Internet root nameservers - was only 376 bytes in

size [15]. Assuming an average instruction length of 32 bits (the targeted x86 archi-

tecture actually uses variable length instructions), SQLSlammer contained roughly

94 instructions. Even with loops in the code and other processes executing for a

portion of the CPU time, it can easily execute within the 75 billion instruction win-
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dow. Although, it would have been detected eventually, it would still have caused the

intended damage.

2.6.3 Tightly Coupled Monitoring Coprocessors.

2.6.3.1 CuPIDS. Williams’ paper is one of the more recent imple-

mentations of a coprocessor-based IDS [59]. Rather than use a coprocessor located

on a separate daughter card from the host CPU as with CoPilot and the independent

auditors system, CuPIDS leverages the uniform memory access (UMA) multiproces-

sor model to perform intrusion detection and security policy compliance monitoring

(SPCM). CuPIDS is implemented on a dual-processor system, although it can oper-

ate in any UMA-based multiprocessor/multicore system regardless of the number of

processors. A single instance of FreeBSD executes in a symmetric multiple processing

(SMP) fashion on the two cores, however the cores are leveraged by the OS in an

asymmetric fashion - one core for production processes and the other for monitoring

processes. As such, only one of the processors in the dual-processor system is available

to the user for executing production code.

The tightly coupled nature of CuPIDS provides it with a very powerful capability

- the monitoring CPU has access to virtual memory. As such CuPIDS can monitor

code executing in both the kernel space as well as the user space, whereas CoPilot can

only monitor code that resides in the kernel space (i.e., hard-wired pages). CuPIDS is

afforded this ability by the coprocessor being at the same logical level as the processor

executing the code being monitored. That is, the coprocessor in CuPIDS has all
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permissions and capabilities of the production processor, whereas the coprocessor in

CoPilot only has the permissions and capabilities of a peripheral within the system.

The CuPIDS architecture operates under the assumption that the operating

system is not compromised. As only a single OS executes over multiple processors,

this must be the case in order to ensure trustable operation of CuPIDS, as the OS

itself houses the monitoring functionality. The backbone of the CuPIDS architecture

are CuPIDS Production Process (CPP) and CuPIDS Shadow Process (CSP) pairs. A

CPP is the process executing on the production processor core and its corresponding

CSP is the process running on the shadow processor core that monitors that particular

CPP. When a production process is to be monitored, a CPP and CSP are created and

checked to ensure that they can be trusted. If both can be trusted, the CSP, followed

by the CPP, are loaded into memory and “hooks” from the CSP into the production

process’ virtual memory space are created. The CPP then executes on the production

processor while being monitored by the CSP executing on the shadow processor.

In order to keep efficiency as high as possible, the CSP performs checks on its

corresponding CPP only when certain events that can be used to detect an intrusion

occur. Such anomaly-based events include variable use/creation/deletion events and

checkpoint events - both of which are inserted into the CPP before execution. Events

are communicated from the CPP to the CSP via streamlined system calls that are

sent through the operating system’s kernel memory space.
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In the instance where an event is triggered and an intrusion detected, the CSP

can either simply notify that the CPP has been compromised, or it can notify as well

as block further execution of the process - a function that the CoPilot System cannot

perform [46]. Furthermore, events can be placed before/after key data structure

modifications, in honeypot code (i.e., invariants), or randomly. Since these events can

be placed anywhere and occur at any time, such an approach makes it very difficult,

if not impossible, for a timing-based attack to compromise a CPP.

Furthermore, CuPIDS not only uses anomaly-based intrusion detection as men-

tioned above, but also specification-based intrusion detection as well. This is done

through the use of white lists. When a CPP is created, a white list containing func-

tion, library, and system call source-destination pairs is created. Thus, when a jump

or branch in the code is taken, the branch destination address is compared to the

values in the white list to ensure that the branch is valid. This can also be used to

perform stack monitoring in order to detect buffer overflow attacks.

Not only is the CuPIDS architecture robust in terms of capabilities, it can also

detect intrusions in a matter of thousands of instructions rather than millions of

instructions that uniprocessor host-based (i.e., software-based monitoring) methods

typically take. Due to such a fast response time, the CuPIDS architecture affords

the ability for self-healing. This is done by leveraging the knowledge that there are

a number of known dangerous libraries that exist. When a function from such a

library is called, the page that corresponds to the data to be operated on can be

automatically copied. If the data is subsequently damaged by that function being
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called maliciously, CuPIDS may be able to automatically repair the damage using

the saved page, as if the malicious code had never executed. Furthermore, the fast

response time of CuPIDS also allows the forensic logging of intrusion events for later

analysis.

Despite CuPIDS’ robust nature, it is not without its drawbacks. The most no-

table of these drawbacks is that despite efforts to minimize overhead in CuPIDS, there

is still roughly a 15% performance decrease compared to non-monitored execution.

Also, since the OS is executing in an SMP fashion on both the production CPU and

the shadow CPU, the shadow CPU is not invisible to the production CPU. Thus,

if the OS is ever compromised, the entire intrusion detection system is susceptible

to being compromised. As a result, CuPIDS falls within the self-secure monitoring

system security category. Moreover, it may not even be verifiable whether or not the

intrusion detection system has been corrupted if the OS is ever compromised.

2.6.3.2 A Security Enhanced Chip Multiprocessor. Shi et al. propose

an IDS that is very similar to the CuPIDS architecture in [50]. Like the CuPIDS

architecture, the Security Enhanced Chip Multiprocessor (SECM) uses multiple pro-

cessing cores in an asymmetric manner where one core is used to monitor the host

core in parallel. Unlike CuPIDS, however, the SECM uses two distinct operating sys-

tems - one executing on each processing core. Furthermore, the SECM uses a shared

Level 2 (L2) cache, with each processor core containing its own Level 1 (L1) data and

instruction caches. State information is gathered by tapping directly into the memory
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bus between the caches and the processor core itself as well as instruction trace data.

Thus, each time a monitoring processor requests data, the request is checked by the

SECM thus enabling the monitoring of memory via cache, not main memory itself.

The operating systems of the SECM are implemented in a unique way for a

multi-core processor. The OS on the host processor is just a normal Linux-based ker-

nel. The OS on the monitoring processor is a stripped down Linux-based kernel. This

is done to give the monitoring OS a smaller “footprint”, thus making it more secure.

Furthermore, Shi et al. have implemented a scheme that partitions the privileges of

the two operating systems. The host OS is given privileges to only a certain amount

of non-threatening high level functions, while the secure OS is given full privileges

over the system. This ensures that the monitored processor core cannot circumvent

the secure processor core in the event that the monitored core is compromised. As a

result, the SECM falls within the tight-hard monitoring system security level.

As with CuPIDS, the SECM architecture uses many forms of detection to

determine if an intrusion has occurred. It implements both anomaly-based and

specification-based intrusion detection via checkpoints and call/return address check-

ing. State information is gathered via the memory bus between the L2/L1 caches and

the processor core itself. The execution trace is also used. Monitoring is performed by

the privileged processor checking each request made to memory by a lower privileged

processor. Such state information is gathered from the local memory bus connecting

the caches to the processor core rather than the actual memory bus external to the

processor, enabling the detection of relocation attacks that occur in cache. Further-
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more, kernel-level rootkits can be detected via openly available tools. In the event

that a rootkit is successfully installed, the SECM can recover, as a clean copy of the

monitored OS kernel space is stored by the privileged processor.

Performance of the SECM is somewhat unclear, however. Unlike the CuPIDS

architecture, the SECM is not actually implemented in hardware to date. Shi et

al. rely on performance emulation by a simulator to determine a general estimate of

performance. Furthermore, there is no comparison to the performance of a similarly

configured, non-monitored system. Thus, the benefits afforded by monitoring using

the SECM are potentially marred by performance degradation.

2.7 Hardware-assisted Security Mechanisms

While the research we have described up to this point has focused on actual

intrusion detection systems, many hardware-based mechanisms have been proposed

the focus specifically on a particular security threat or a small subset of threats.

Hardware-assisted security mechanisms are usually intended for specific applications.

As such they have thus far been targeted more at embedded and application specific

markets that tend to have tighter design constraints and more static software envi-

ronments. Implementation of such hardware-based mechanisms also tend to apply to

computer architecture in general, thus the concepts are not limited to a particular

system structure. This section describes such security mechanisms that are either

related to our work or have served as a foundation for the direction that we have

taken.
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2.7.1 Hardware-based Stack Protection. One of the most common attacks

used to compromise a system is known as stack smashing [45]. This attack uses some

weakness, usually a buffer overflow exploit, present within the code to rewrite infor-

mation residing on the stack. Information is rewritten in such a way as to rewrite the

return address of a function that has yet to complete. When the function completes

and attempts to return to the location from which it was originally called, it uses

the address that was rewritten by the buffer overflow, causing the control flow of the

executing process to be redirected from its own code to malicious code injected onto

the stack or residing somewhere else in memory.

In order to defend against the type of attack described above, a secure return

address stack (SRAS) has been proposed and simulated by Lee et al. in [34]. The

SRAS is a hardware-based last-in, first-out (LIFO) buffer similar to a stack, however

it only stores return addresses of functions whose blocks have been pushed onto the

stack rather than an entire function block. When a function returns, the address

stored at the top of the SRAS is then compared to the return address stored in the

main stack. If the two addresses differ, then the processor is notified so that it can

take appropriate action. This is realized via adding special instructions that control

the operation of the SRAS. As such, monitored code must explicitly communicate

with the monitoring mechanism to function. This, combined with its hardware-based

implementation, places this security mechanism in the loose-hard monitor security

level.
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Although the hardware-based nature of the SRAS makes it more secure, it is not

without its drawbacks. One such drawback is that it can only store a finite number of

return addresses. Thus, if the stack becomes completely filled, then the contents must

be moved to main memory to make room for new return addresses to be placed on the

SRAS. Memory locations containing overflow return addresses are protected by only

allowing the kernel to access them (assuming the kernel has not been compromised

through some other means). Furthermore, it should also be mentioned that although

the SRAS is dependent on the LIFO nature of the stack, it can handle non-LIFO

control flow in a number of ways. These include: not-allowing non-LIFO code to be

executed, creating new commands within the compiler to push return addresses onto

the SRAS at times other than function calls, and deactivating the SRAS completely.

2.7.2 Microinstruction-based Monitoring. Microprocessors each have an in-

struction set architecture (ISA) that is dictated by the architecture of the processor.

The ISA defines the machine-level instructions that allow the user/programmer to

control the hardware. Most microprocessors today also implement microinstructions

that coordinate data and control flow within the processor. Thus, a single machine

instruction can be composed of many microinstructions. Such microinstructions are

not accessible by the programmer and enable the modification of a processor’s archi-

tecture while keeping the same ISA for compatibility reasons.

Rather than add external hardware to monitor the execution of a processor,

Ragel et al. have proposed a method of creating self-checking instructions by modi-
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fying the microinstructions that implement potentially “dangerous” instructions [48].

Ragel’s system is intended to be applied to embedded applications only, as their pro-

posed methods also require a modified compiling chain in order to determine which

instructions in code are deemed as “critical”. Buffer overflow attacks, fault injection

attacks, and out of bounds memory address accesses are checked for. Their proposed

microinstruction changes that implement these checking schemes are just used as ex-

amples of what can be done with their system and do not represent the full capabilities

of such a system.

Their system prevents certain buffer overflow attacks by using a hardware-based

return address stack like that described in 2.7.1. Faults injected into the instruction

path are checked by reading the instruction memory before an instruction is fetched

and comparing that instruction with the one that is fetched by the instruction fetch

unit. Faults injected into the data path (i.e., the execution pipeline) are checked

by storing the write-back address (determined in the instruction decode stage) to a

FIFO buffer and comparing that to the actual location where the data is written back

to during the write-back stage of the pipeline. Memory boundary checks are also

performed by making sure that instructions do not access areas of memory outside of

a particular range. This method is rather coarse-grained, however, and finer-grained

methods are described in 2.7.3.

Clock speed reduction as a result of implementing micro-embedded monitoring

is reported to be less than 7% for all applications tested. Area overhead associated

with the added microcode is also relatively minimal at no more than 15% added area.
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It should be noted, however, that no mention is made of how effective these techniques

are at actually detecting the attacks that they are designed to defend against.

2.7.3 Control Flow Monitoring. While tracking the execution flow of code

is not a new concept in the ID field, doing so at the hardware level is a relatively

recent development. As code is ultimately executed by the processor as machine level

instructions, it is logical to assume that we can gain insight into the execution of the

code if we could directly monitor the pipeline of a processor. Some research has been

conducted to view this state information and utilize it for intrusion detection tasks.

In [72], Zhang et al. propose modifying the XOM secure processor model to be

able to check the control flow of a program for anomalous events using hardware-

based methods. Whereas software-based control flow monitoring techniques typically

can only track control flow at a function/syscall granularity, Zhang’s method can

track a program at the instruction level. For the detection system to know what

what is considered “normal”, two methods are used. The first consists of parsing the

text segment of the process to be monitored. This determines where all branching

instructions reside in the process’ virtual memory space as well as the address that

each branch can branch to. The second method involves executing the process in

a known trusted state in order to train the detection system to be able to recognize

what branching behavior is considered “normal”. With this information, the detection

system monitors the current program counter, the next program counter, and the type

of instruction as the processor executes. The detection hardware is implemented as
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a staged checking path where the more common branches are checked earlier in a

previous stage in order to keep pipeline stalls to a minimum. If a branch jumps

to an address not deemed as legitimate or a branch instruction occurs where there

should not be one, then an exception is raised and handled securely by the monitoring

hardware. A similar action is taken if a degree of abnormal branching behavior occurs.

A hardware based return address stack like that described in 2.7.1 is also implemented

to ensure that function and system calls return to the appropriate address when

complete.

Further work done by Zhang et al. and presented in [73] has improved on the

anomaly detection capabilities of their previous work. Their previous work could

only look at a single branch when checking for anomalous behavior. However, their

updated technique can now correlate multiple branch instructions when checking for

anomalous control flow behavior. This is done by recording all “normal” execution

paths during training. Such paths are stored in a table that can be accessed by the

control flow checking hardware during runtime. This anomalous path detection is

not limited to a particular number of branches (control flow changes). Furthermore,

this more recent work has also improved direct jump checking by parsing dynamic

libraries linked at runtime in addition to the already parsed process binary (text

segment). Results of this work show that anomaly detection can be done with very

little overhead due to the control flow checking being done in hardware. Additionally,

anomaly detection efficiency was found to be high and occurred within a few cycles

of entering the production processor’s pipeline due to the staged design of the control
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flow checking hardware. Drawbacks still exist, however. These include the detection

efficiency’s dependence on how well trained the system is and the fact that system

must be trained for each process that may be monitored - a possibly arduous process

for a dynamic, multiprogrammed environment. As such, these methods are probably

better suited to embedded applications where the software environment is more tightly

controlled.

Arora et al. present even more recent research efforts in [3] whereby they in-

troduce a mechanism that provides for multi-grained, real-time monitoring at the

instruction execution level. To enable this, the program counter and instruction

register are used to expose the current executing instruction and its corresponding

address in memory to the monitoring hardware. Detection is accomplished by utiliz-

ing specification-based ID techniques. However, it should be noted that no security

policy is explicitly defined by the developer/user. The specification is created by

utilizing static program analysis techniques to define permissible behavior which is

then checked against during program execution. Additional static analysis is also

performed at program loading to gather address information for dynamically loaded

libraries which is unknown at compile time. The program attributes that are extracted

to define the specification are described below:

• Inter-procedural Control Flow: This attribute is concerned with proper control

flow between different functions within the code being monitored. This infor-

mation is extracted from the code by creating a function call graph that maps
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all function calls and their return addresses within a program. The function call

graph is then converted into a finite state machine (FSM) that is implemented

in hardware. Checking done using this information is the most coarse-grained

of all of the invariant checks.

• Intra-procedural Control Flow: This attribute is concerned with proper control

flow within a function residing in the code being monitored. This information

is gathered by determining all possible branch source-destination pairs within

all functions within the code to be monitored.

• Instruction Stream Integrity: As not all attacks change the control flow of the

targeted program, this attribute is used to ensure that the code within a basic

block has not been modified. These invariants are determined by creating a

hash value for every basic block within the code. Checking done using this

information is the most fine-grained of all of the invariant checks.

The mechanism is implemented in three main blocks - one corresponding to

each of the three types of invariant checking performed. Intra-procedural control flow

checking is performed similarly to hardware-based return address stacks described in

2.7.1. The FSM mentioned earlier compares the state index (generated at compile

time) of the start and return addresses. If the start and return state indexes correlate

to an allowable control flow change represented in the FSM, the control flow change is

allowed to continue. Inter-procedural control flow checks are performed by using the

starting address of the currently executing function to calculate offsets of the branches

within the function as they execute. These are then compared to the stored branch
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source-destination pairs (generated at compile time). Instruction stream integrity is

accomplished by buffering the instructions of a basic block as the processor executes

them. When a branch instruction is reached, a hash of the instruction buffer is

computed and compared to the corresponding hash that was statically generated at

compile time.

Each invariant check includes a mechanism for stalling the processor should any

part of the detection process occur too slowly. As such, this detection runs in lock

step with the executing code being monitored. The detector’s state is managed by

control logic in each of the three main blocks. As such, this detection mechanism does

not execute any software of its own. Due to the parallel, hardware-based nature of

this mechanism, little overhead is introduced. The only degradation in performance is

caused by the hashing of basic blocks for instruction stream integrity checking. In this

case 50%-60% of basic blocks are reported to be able to be hashed without having any

noticeable performance penalty. It should also be noted that since this mechanism is

synthesized based on static analysis techniques, this mechanism is application/process

specific.

2.7.4 Non-executable Memory. Certain forms of malicious attacks execute

code from a process’ data memory space - a space typically used for storing only data.

Such attacks are enabled by the fact that processors based on a von Nuemann archi-

tecture have a shared data and instruction memory space. As a result, the processor

can not distinguish a data access from an instruction access. Recently, however, mod-
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ern von Nuemann-based processors have been updated to be able to distinguish the

difference, disallowing instructions from executing if they resided within a portion of

memory deemed as non-executable. AMD first commercially introduced this technol-

ogy, known as No-Execute (NX) bit, and later Intel with the eXecute Disable (XD)

bit [56].

The NX/XD bit works by adding an extra bit to all addresses within the page

table entry (PTE) [19]. If the program counter is set to (i.e., branches to) an entry

in the page table that has the NX/XD bit enabled, the instruction is not allowed to

execute and an exception occurs. Thus certain attacks, like buffer overflows, can be

prevented quickly and efficiently in hardware.

2.8 Trusted Operating Systems

While our work does not focus on implementing a trusted operating system, it

does require that the software or operating system to be protected can execute in a

trusted state for certain tasks. Most operating systems start up via an unrestricted

process. That is, that there are no checks to ensure that what is being booted has

not been compromised in some way. Lipton et al. propose a method call Spy that can

create a trusted environment from untrustable machines [36]. Through their research,

they formally define the problem of trusted software and prove that in order to be able

to trust software, some form of hardware - the spy - must be present to enforce certain

key policies. Similar work is presented in [23]. This research specifically explains how

an actual coprocessor can be used to perform invariant checking of key kernel data
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structures, ensure filesystem integrity, as well as detect viruses - all of which work

together to create a secure operating environment. Earlier work by Arbaugh et al.

resulted in the Aegis system which implements system wide modifications to ensure

than an OS can be booted into a known trusted state [2]. Modifications to the system

include creating BIOS enhancements that allow for a multi-level booting approach

where each level in the boot process provides for more privileges once the previous

level has been successfully completed.

Perhaps most relevant to our work, however, is a method used by CuPIDS by

which the OS operates in an untrusted state, but certain key operations require that a

temporary trusted state be created in order to complete. A key example of this is the

creation a shadow process to hook into and begin monitoring a production process.

Once the shadow process is created and is executing on the shadow CPU, the OS

is no longer in a trusted state. Further information on how the secure startup of a

trusted process completes can be found in [59].
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III. Research Concepts and Methodology

I
n this chapter we discuss the concepts that serve as a basis for our research. We

begin by presenting our research hypothesis as well as discuss the security exploits

that our work is intended to target. This is followed by the general architecture

- hardware and software - that enables robust parallel security monitoring at the

hardware level. We then go on to present the general functional primitive concepts

that leverages our architecture to gather and process state information.

3.1 Research Hypothesis

If there is one main drawback (with respect to security) in the development of

modern computing architectures, it is that they have primarily been designed with

performance, rather than security, in mind. Our research explores ways in which we

can break through the limitations that current architectures impose. We intend to

define new means by which system state can be revealed and processed to allow for

more robust and flexible security policy compliance monitoring mechanisms. To ac-

complish this, we believe a contemporary multiprocessor computer architecture can

be modified in such a way as to allow the creation of functional primitives that can

expose and process state information in ways previously unavailable at the hardware

level. This will not only allow for more secure, better performing, and more capa-

ble security policy compliance monitoring, but also provide a flexible architecture

by which security functions can be tailored to particular applications on the same

platform.
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3.2 Targeted Exploits

Our theories apply to a very broad range of events. As we are viewing events

at the hardware level, both malicious activity as and erroneous program behavior

can be detected. As such, our concepts can be viewed as applying to SPCM. SPCM

includes detecting malicious activity as well as detecting unexpected activity, such as

bugs or errors that software developers and quality assurance (QA) testing did not

catch. Therefore, our research is not trying to defend against any one specific subset

of events. Additionally, it should be noted that the memory introspection techniques

we propose focus on main memory; however, it is safe to assume that the monitoring

concepts we propose can can also provide us the ability to monitor a processor’s cache.

Thus, the monitoring concepts resulting from this research could be applied in such

a way as to protect against attacks that leverage the cache (i.e., relocation attacks).

3.3 Architectural Overview

This section provides an overview of the hardware and software architecture

of the platform for which the functional primitives are being developed for. It also

describes the abilities and features that this architecture architecture enables.

3.3.1 Hardware Architecture. The general architecture of our parallel mon-

itoring concept is shown in Figure 3.1. As can be seen, the architecture contains

multiple processing elements - the production processor unit (PPU) and the shadow

monitoring unit (SMU). The PPU is responsible for executing all user-related code
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such as the system’s main OS (if one is present) and any applications. The SMU is

responsible for performing all security monitoring tasks. The number of processors

the architecture supports is unlimited, however, each PPU in the system should have

a dedicated SMU that corresponds to it.

Figure 3.1: General Overview of the Hardware Architecture

A shared memory architecture in a UMA configuration is used as the foundation

for developing our parallel security monitoring techniques. This allows both the PPU

and the SMU to have the potential to access all memory and peripherals within the

system. Additionally, the system is configured in such a way as to restrict access
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to certain peripherals for each of the processing elements. An example would be to

assign the serial port of the system to only be accessed by the SMU for administrator

control purposes. This peripheral assignment is dependent on the application and

controlled by the system designer.

Although shared memory multiprocessing platforms have been available for

years, shared memory multicore processors (multiple processing cores residing within

the same physical package) have become commercially available only recently. Multi-

core chips have the potential for their cores to be more tightly coupled than the cores

of their multi-processor counterparts. This is because the cores of a multicore chip

can be designed to communicate with each other via on chip facilities such as on-die

interconnects or a shared cache, rather than having to rely on an external (to the

entire processor) system bus. Our research leverages such a multicore architecture

to enable new forms of parallel security monitoring. As a result, we can tap into

certain signals within the PPU, enabling the PPU to transmit state information to

the SMU purely in hardware as depicted in Figure 3.1. This eliminates the need to

use the system bus for communicating the state of the PPU to the SMU, allowing

our monitoring techniques to not be limited only to state information accessible from

the memory bus and/or the core’s debug logic. Similarly, this tighter coupling of the

cores allows control signals from the SMU to the PPU to be implemented without the

need of an external system bus as well.
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3.3.2 Shadow Monitoring Unit Configuration. The SMU in the architecture

can be implemented in a number of ways providing a level of flexibility for efficient and

capable hardware-based, parallel security monitoring. Different types of monitoring

requires different types of hardware. For example, some mechanisms may need to

detect illegitimate events immediately, thus requiring the monitoring mechanisms to

be implemented using real-time-logic (RTL). Additionally, a mechanism may need to

perform a complex algorithm on state information over a period of time, in which case

a coprocessor would be more appropriate for implementing the monitoring mechanism.

As such, the SMU can be implemented as a coprocessor, RTL, or a combination of

the two. Furthermore, if implementing the SMU using a coprocessor, it can either

be identical to the PPU or a totally different architecture altogether. As such, the

SMU can be seen as a black box in an overall architecture that we propose to be well

suited for creating and implementing real-time, parallel monitoring mechanisms. The

configuration of the SMU is left to the system designer and is dependent on the needs

of the particular application(s).

How the SMU is implemented affects the capabilities of the monitoring hard-

ware, however. If a coprocessor is used, the SMU can have native access to main

memory and can execute actual code. If RTL is used to implement the security mech-

anism(s), however, the SMU will lose the ability to execute code. Additionally, using

RTL to implement the SMU will make accessing main memory less trivial (but not

impossible) than if implementing the SMU as a coprocessor. However, it is not re-

quired that the SMU have access to main memory depending on the application of
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the SMU. As such, the SMU may not always take advantage of the shared memory

nature of our proposed platform. To denote the optional nature of the SMU’s connec-

tion to main memory, the connections from main memory to the SMU are denoted

by dashed lines in Figure 3.1. It should also be noted however, that no matter the

implementation of the SMU, the SMU will always have direct connections to the PPU

for gathering state information and sending control signals.

3.3.3 Software Architecture. Shared memory architectures are typically

implemented to facilitate an SMP environment. In an SMP system, every processor

is exactly the same and executes similar types of tasks. For this to occur, an OS must

be able to support SMP so that the OS can assign tasks that can take advantage

of multiple processors. SMP systems also rely heavily on dependent tasks using the

shared memory nature inherent in an SMP system to share data among the multiple

processes on different processors.

Although the hardware architecture is built upon a shared memory architecture,

the processors are used in an asymmetric manner; that is, one processor is responsible

for performing entirely different tasks than the other processor in the system. Rather

than use a single OS spanning both processing elements, two entirely separate OSs

are used - one executing on each processor. Whereas the CuPIDS architecture relied

on the OS for gathering state information and communicating between the processing

elements, we are able to use two separate OSs since we gather state information and

perform inter-processor communication via hardware. This also enables our system

59



to be implemented on computer architectures that do not support cache coherency,

as cache coherency is a requirement for SMP systems. The software architecture is

shown in Figure 3.2 below.

Figure 3.2: General Software Architecture

Despite both OSs being standalone and using hardware as a communication

medium, the PPU OS may still need to be modified in order to explicitly send certain

synchronization signals to the SMU. This explicit communication is depicted by the

dashed arrow in Figure 3.1. This is dependent on the the type of monitoring being

performed. However, as we desire the operation of the SMU to be as transparent to

the SMU as possible for security reasons, explicit communication from the PPU to

the SMU is kept to a minimum. An example of a modification required to implement

such a communication mechanism is to modify the scheduler to trigger an interrupt

signal on the SMU to notify the SMU that a context switch has occurred. Thus, there

may be minimal coupling between the PPU code and the SMU code.
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It should be noted that an OS need not be implemented on either the PPU or

SMU. The implementation of software is completely up to the system designer and is

dependent on the type of security monitoring to be performed as well as the target

computing environment (i.e., an embedded system may not use an OS, but a general

purpose system will always use an OS). This creates a large degree of flexibility in

how the security-related monitoring is implemented and to what systems our parallel

monitoring techniques can be applied.

3.3.4 Monitoring System Security. One of the ultimate goals of our research

is to create a real-time detection system with access to state information, while ex-

posing as little of the monitoring mechanism to the PPU as possible. We assume the

PPU is vulnerable to attack, so the less visible the SMU is to the PPU, the more se-

cure the SMU will be from attack. The software executing on the PPU is the primary

medium of attack we are protecting the monitoring system (i.e., the SMU) against.

Therefore, the software coupling between the PPU and the SMU is minimized as

much as possible. As a result, hardware must be used to tightly couple the PPU to

the SMU. This improves security over more software dependent coprocessor intrusion

detection systems such as CuPIDS [59]. Additionally, the user only has visibility of

the PPU in the system and as such has no way of explicitly communicating with the

SMU. Thus, only a system administrator can directly communicate to the SMU and

such communication does not go through the PPU in any way.
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As the software executing on the PPU may have to be modified in order to

explicitly coordinate with the SMU depending on the monitoring mechanism being

implemented, coupling between the production code and the monitoring code is in-

evitable. Although the modifications would be minimal (synchronization signals at

most), it still creates an avenue for an attacker to alter the operation of the SMU.

However, since modifications should be minimal, the attack surface is reduced, and

hence the portion of the PPU code that must be protected to ensure that the opera-

tion of the SMU cannot be illegitimately altered is decreased. Considering the amount

of useful state information we are gathering, this is an improvement in the security of

the monitoring mechanism itself compared to other host-based and coprocessor-based

intrusion detection systems. It should also be mentioned that the need for the PPU to

explicitly communicate to the SMU mostly affects a multiprogrammed environment

where multiple different processes may need to be monitored.

In certain cases the PPU may need to send certain data regarding a specific

monitored process to the SMU when such a process is created. An example of this is

the page directory address of a process to be monitored. When this communication

between the processing elements occurs, the PPU should be in a known safe state

and only required portions of the kernel should have access to the communication

mechanisms. This is similar to how a shadow process was created in CuPIDS [59].

Further information on creating a trusted OS state in an insecure system is described

in [23]. As our research focuses on the security monitoring mechanisms themselves,
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not on creating a single contiguous security monitoring system, this is outside the

scope of our research.

3.4 Target Environment

Although coprocessor-based intrusion detection systems are more flexible than

purely hardware-based security mechanisms and can be implemented in multipro-

grammed (e.g., desktop and server) environments, they have their limits. In the case

of a system like CuPIDS, the reliance on software makes the IDS itself vulnerable to

attack and introduces communication overheads. In the case of a system like CoPi-

lot which relies more on hardware to perform security monitoring, visibility into the

system’s memory space is limited, and as a result, so is its flexibility. Our research

focuses on further bridging the gap between software and hardware mechanisms in

order to make security mechanisms that are high performing, yet flexible and secure.

As such, we are not targeting one specific computing environment, but rather the

entire spectrum of computing environments. The techniques we propose are just a

sample of what can be done with the novel multicore shared-memory architecture we

propose.

3.5 Functional Primitives

In this section we present models by state information is gathered from the PPU

and leverage that information for security-related monitoring. A number of methods

are presented here. Most methods are mutually exclusive of the others presented,
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thus a single concept or a combination of all the concepts can be implemented into a

design depending on a user’s specific security needs and the target environment.

3.5.1 Multi-context Hardware Monitors. A number of hardware-based se-

curity mechanisms discussed in Section 2.7 are limited by being application specific.

As such, only one instruction stream context can be monitored by these security

mechanisms. This limits the effectiveness of these monitors in multi-programmed en-

vironments. While such hardware-assisted security mechanisms may be feasible for

application specific and focused embedded applications, embedded applications are

becoming more robust and complex. Additionally, these security mechanisms would

also benefit common multi-programmed (multi-context) environments. It is impor-

tant to mention that not every context needs to be monitored, but currently there is

no way for the security mechanisms to even discern between separate processes. Thus,

without running behavioral analysis on the system to create an idea of what behavior

is acceptable, these mechanisms will not work correctly when trying to operate in

a multi-programmed environment. Even with having done behavioral analysis, such

monitors are only feasible for less complex or tightly controlled systems and/or are

prone to producing false positives. Additionally, such mechanisms will have difficulty

even if only trying to monitor a single process as the monitor cannot precisely and

efficiently discern between different processes.

As we desire the SMU to be able to discern between different processes executing

on the PPU in real-time, exposing the process identifier (PID) is the most logical piece
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of state information that can enable this. In an OS, the system scheduler determines

when each process executes. It keeps track of all processes and the state of the process

using a table stored in the kernel space of the OS itself. This portion of the kernel

is paged, but hardwired into main memory, thus the location where the currently

executing PID is stored remains constant. Monitoring this location in memory can

allow us to keep track of what process is currently executing.

It should be noted that we are not concerned with how the monitoring hardware

knows which process or processes it needs to monitor, however, we are concerned about

whether the capability exists to use the PID to allow the SMU to be able to discern

between various executing processes. Once the PID has been made visible outside of

the PPU, the SMU can take the appropriate action to enable multi-context hardware

monitoring. There are three general ways this can be done and each is described

ahead.

Figure 3.3: Multicontext Monitoring With Multiple Monitors
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1. Monitoring a single process out of many currently executing processes: This is

the simplest case. It requires the monitoring hardware to be enabled only when

the PPU outputs the PID corresponding to the process to be monitored.

2. Monitoring multiple processes with the same hardware: This is similar to the

first method, but the SMU has a list of PIDs that correspond to monitored

processes. This case also requires some method of storing state when switching

between processes being monitored. As such, it is practical to implement the

SMU in the form of code executing on a processor core for the ease of writing

to memory. Doing so also provides for flexibility by using the same monitor-

ing hardware, but with different monitoring algorithms for different monitored

processes.

3. Monitoring multiple processes with multiple types of monitoring: This is the

most complex case. This method must monitor multiple processes, but uses

multiple independent hardware monitors. Some form of selection logic is needed

to generate the select signal that enables a particular monitoring mechanism, as

well as complete the connections between the PPU and the SMU so the active

monitor can retrieve state information from the PPU. This method is depicted

in Figure 3.3.

3.5.2 Program Counter and Instruction Trace Exposure. The program

counter (PC) keeps track of the memory location containing the currently executing

instruction. We intend to monitor the PC as the PPU executes and use it to aid in
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SPCM tasks. This information can be leveraged to provide the two main capabilities

described below.

3.5.2.1 Execution Policy Enforcement. By keeping track of the PC,

we can keep track of exactly from where in memory an instruction is being executed.

Thus, when having defined where in memory code is allowed to execute and where

it is disallowed, the PC can be used to check if such a policy is being adhered to or

not. This knowledge of what code is allowable can have multiple granularities ranging

from the global level to the basic block level.

Figure 3.4: Program Counter Monitor High-level Architecture

Knowing the PC at any given time enables an ability similar to that of XD bit

and NX bit technology from Intel and AMD, respectively. This technology prevents

the execution of instructions residing in memory locations deemed as non-executable

by adding an extra bit in the page table entries stored in memory [56]. Gaining

access to the PC can provide a similar protection for processors that do not natively

support it. This concept is depicted in Figure 3.4. For every instruction, its PC is
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automatically checked by the SMU. Theoretically, we have the ability to keep track

of every address in the memory space and then compare the PC in order to check

if the executing instructions are allowed. Additionally, it should be mentioned that

such a mechanism can also be used to aid in the enforcement of certain permissions

in an asymmetrically shared memory space like the one proposed in Section 3.5.4.1.

3.5.2.2 Branch Source-Destination Address Checking. A number of

researchers have proposed methods that monitor control flow changes as code exe-

cutes for security purposes [16, 29, 34]. Furthermore, a number of hardware-based

mechanisms have already been implemented to leverage such information for branch

source-destination address checking [3,73]. While not proposing any new methods to

perform branch source-destination checking, its important to mention that the cur-

rent platform can be used to implement such a system, as these techniques are an

application of exposing the program counter and instruction state information. As

such, our architecture can facilitate similar monitors.

3.5.3 Peripheral Access Control. Just as processes should only execute in-

structions from legitimate memory locations, processes should also only access the

peripherals within the system that they were originally intended. As a result, a hard-

ware mechanism that could enforce such policies would be beneficial. Moreover, im-

plementing such a mechanism in hardware would make circumventing such a policies

more difficult than if protections were implemented in software.
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Figure 3.5: Peripheral Access Control Monitor General Architecture

The general architecture of the peripheral access control monitor is shown in

Figure 3.5. As this primitive specifically monitors peripheral access on a per process

basis, this requires techniques proposed in Section 3.5.1 to reveal the PID of the

currently executing process to the SMU. Additionally, to determine what peripheral,

if any, is being accessed by a process at any one time, the monitor also requires

visibility into the addresses that the process is accessing. This assumes that the PPU

uses memory mapped I/O, as communicating with peripherals occurs as read and

write operations to specific address ranges via the main memory bus being monitored.

3.5.4 Hardware-based Memory Introspection. Various memory introspec-

tion techniques have been used for hardware-based security monitoring in systems

such as CoPilot and CuPIDS [46, 59]. We present a number of techniques related

to the hardware-based memory introspection below which are complementary to the

primitives we have proposed thus far.
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3.5.4.1 Asymmetrically Shared Main Memory. As our platform is con-

structed on a shared-memory architecture, both the PPU and the SMU can access the

same main memory. This is ideal from a monitoring standpoint as both the PPU and

the SMU can have visibility into the same physical memory space. Traditionally, how-

ever, all processors in a shared-memory architecture have access to the entire memory

space and can read and overwrite the data corresponding to a process executing on

another processor. Although safeguards are usually put in place (within the OS) to

ensure that a process cannot alter another process, this cannot be assumed as true

if the system is ever compromised. To limit this vulnerability, we wish to minimize

the amount of knowledge the PPU has of the SMU, making the SMU’s operation

as transparent to the PPU as possible. Thus, the traditional shared-memory model

must be altered to facilitate such a capability. This change is further reinforced by

the architecture executing independent and different software on the SMU than the

PPU, whereas a traditional shared-memory model is implemented with a single OS

spread across multiple processors.

Figure 3.6 depicts a high-level view of how the shared memory is organized (not

drawn to scale). In order to make the SMU’s memory space invisible to the PPU (so

the PPU can not be used to compromise the SMU), the PPU’s software/OS must

be instructed to view only a portion of the total available physical memory space.

This region of memory should be contiguous, otherwise the PPU would have to be

aware of the SMU’s memory space - something we are trying to avoid. The SMU

attains visibility into the PPU’s memory space by being configured to have access to
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Figure 3.6: Memory Map and Permissions as Viewed by the PPU and the SMU

the entire physical memory space. As such, the SMU has access to its own memory

space while still being able to access the PPU’s memory space for security related

monitoring. Essentially, a quasi non-uniform memory access (NUMA) architecture is

created from a UMA architecture. This architecture differs from a traditional NUMA,

however, in that the memory space is asymmetrically distributed, as the SMU has

access to both the PPU’s memory space as well as its own, while the PPU only has

access to its own memory space. Additionally, a processor must request access to

another processor’s memory space in a traditional NUMA architecture, while our

quasi NUMA architecture specifically avoids this requirement in order for the SMU

to be as invisible to the PPU as possible.

While this architecture can provide the SMU visibility into the PPU’s physical

memory space, this is not enough. Further modifications to the traditional shared-

memory model must be made in order to protect the integrity of the software executing

from the PPU’s memory space. This is because the SMU views the entire physical
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memory space as its own, which could lead to inadvertently overwriting portions of the

PPU’s memory space, causing such code to be corrupted if not careful. Additionally,

the SMU must be prevented from executing instructions that reside within the PPU’s

memory space, as executing such instruction would pose a security risk to the SMU. As

a result, the memory space must consist of regions with their own specific permissions.

These regions apply only to the SMU’s view of the memory space and are described

below:

• PPU Shared Memory: This region maps directly to the PPU’s physical memory

space. It provides the SMU with read/write access to the PPU’s memory for

monitoring and data restoration tasks. This region is non-executable, as we want

to prevent the possibility of the SMU inadvertently executing any malicious code

that may reside within the PPU’s memory space.

• Safe SMU-exclusive: This region acts as a safety measure. As we leave the

decision of what data is stored by the monitoring hardware to the developer,

we provide this region to store information that may be malicious in nature.

An example would be storing a possibly corrupted block of instructions from

the PPU’s memory. Storing this in a non-executable memory space prevents

the possibility of such code corrupting the OS/software executing on the SMU.

This region can be non-contiguous, but must map to physical addresses that

only the SMU has visibility into.
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• Open SMU-exclusive: This region is the only region of the monitor’s memory

space from which instructions can be executed. As such, it is used to store the

monitoring OS and/or any software that executes on the SMU. This region can

be non-contiguous, but must map to physical addresses that only the SMU has

visibility into.

Memory regions that require instructions to be non-executable can be enforced

through various hardware-based means. Processors based on a Harvard architecture

naturally contain a non-executable memory space (the data space) as the data and

instruction memories are separate. Processors supporting NX/XD bit technology

described in 2.7.4 can also be used. If the processor is neither Harvard-based nor

does it have native support for the no-execute bit, an execution policy enforcer like

the one described in 3.5.2.1 can be implemented to perform a similar non-executable

capability.

The asymmetrically shared main memory operates only on the physical memory

space, as opposed to the virtual memory space. The physical memory space is the

data stored in memory as seen purely from the hardware level. Virtual memory on

the other hand organizes data into a number of pages that require the OS and page

table directories (located in memory) to access. As this method relies on the SMU

being able to address the PPU’s memory at the physical level, on its own, it can only

enable security monitoring mechanisms that rely on physical memory introspection.

CoPilot, for example, relies on such a capability [46]. However, this method can also
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help to enable memory introspection into the virtual memory space as well when

combined with the concepts proposed in Sections 3.5.4.2 and 3.5.4.3.

3.5.4.2 Co-opted Memory Management Unit. The CuPIDS prototype

is able to use a separate processor to monitor the user space of code executing on

a production processor by creating a monitoring shadow process that hooks into a

production process’ virtual memory space [59]. This is made possible by the single OS

nature of CuPIDS which tightly couples the monitoring software to the production

software being monitored. As our goal is to create a system where the monitoring

software is as loosely coupled to the production software as possible, we have opted

to execute completely separate software on each processor - preventing the creation

of hooks into the virtual memory subsystem, as was done in the CuPIDS prototype.

Therefore, we propose modifying the memory management unit (MMU) of the PPU

in order to access state information associated with user-space processes executing

on the PPU. It should be noted that as this method targets the virtual memory

subsystem, this technique is intended for dynamic, multiprogrammed environments.

The MMU of a processor is responsible for controlling the translation of virtual

memory addresses into physical memory addresses. In traditional computer archi-

tectures supporting virtual memory, the MMU resides within the processor itself.

Therefore the MMU only services memory requests made by the processor core that

contains it (i.e., contemporary multi-core processors have an MMU for each core).

However, to monitor the state of user space processes in our system, we propose mod-
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ifying the PPU’s MMU such that the SMU can take control of (co-opt) it. This enables

the SMU to be able to access the virtual memory space of the currently executing

process on the PPU. Additionally, it should be noted that we are not proposing mod-

ifications to the virtual memory system itself, but rather we are proposing to modify

the way in which the MMU can be controlled, while still maintaining compatibility

with the currently accepted virtual memory model. This allows us to continue to use

the abstract concept of virtual memory, rather than having to worry about modifying

the complex functionality of the virtual memory system itself.

Figure 3.7: Co-opted Memory Management Unit High-level Architecture

The general architecture of the co-opted MMU concept is shown in Figure 3.7.

It should be noted that we are not concerned with how the virtual address being

monitored is obtained. Therefore, it is assumed that the SMU has knowledge of where

key data structures to be monitored reside within a process’ virtual memory space.

As the virtual address is known by the SMU, state information about the currently
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executing process such as the PID, effective address, PC, etc. can be monitored via

methods proposed in Section 3.5.1 and 3.5.2.1 to determine when the PPU accesses

the data structure in question. The MMU is then co-opted and the physical address

corresponding to the virtual address is retrieved and can be used by the SMU to

access that portion of the PPU’s virtual address space.

3.5.4.3 SMU with Multiple Memory Management Units. Another

option for gaining visibility into the PPU’s virtual memory space, is to use the MMU

of the SMU itself, assuming the SMU includes an MMU. Contemporary processors

contain an MMU and access a process’ virtual memory space by updating a register

used to store the value corresponding to the physical location of a process’ page

directory in memory. It is this register that determines to what virtual memory space

addresses correspond as the processor executes code. As such, the processor can access

the virtual memory space of any process within the system, so long as it is known

where the page directory for a given process resides in memory. As the architecture

can provide the SMU access to the PPU’s memory space via asymmetrically shared

main memory presented in Section 3.5.4.1, the MMU residing within the SMU has

access to the memory locations containing the page directory for PPU processes. This

enables the SMU to be able to access the PPU’s virtual memory space, so long as it

is provided the address where the particular page directory resides.

Using the SMU’s sole MMU may introduce complications since the SMU will

require access to its own code for execution, but is using its MMU to view the virtual
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memory space of a process on the PPU. This can potentially result in the SMU not

being able to return to executing its own code. To overcome such a complication,

we propose modifying the SMU to contain multiple MMUs - a primary MMU and a

secondary MMU. This is shown in Figure 3.8. The primary MMU is used only for

memory accesses for code executing on the SMU itself. All accesses made by the SMU

to the virtual memory space of a process executing on the PPU use the secondary

MMU.

Figure 3.8: Multi-MMU SMU High-level Architecture

Monitoring the virtual memory space does not have to be limited to the cur-

rently executing process as was the case with MMU co-opting. This is a result of

the SMU’s secondary MMU being completely independent of the PPU, allowing the

control register that points to the page directory to not point to the page directory

of the process currently executing on the PPU.

77



In contemporary operating systems such as Windows and Linux, the scheduler

decides when a process executes on the hardware. Processes that are not currently

executing reside on the ready, I/O, or waiting queues [51]. At this point, the secondary

MMU can be used to monitor the virtual memory space of the process waiting on one

of these queues to perform a number of process integrity checks. We see performing

such checks and other monitoring related tasks at this point as being able to provide

five benefits:

1. Ensured Trusted Execution: Monitoring performed while the process is waiting

on the ready queue can ensure that the process has not been compromised before

it even executes on the PPU. When performed every time before a process is to

be given execution time on the PPU, this can ensure that the process is always

in a trustable state before it executes.

2. Complex Algorithmic Monitoring: While waiting on the ready queue, the state

of the process is not changing. As such, the monitoring hardware does not have

to keep pace with real-time execution. This allows the implementation of algo-

rithmic monitoring operations that may not be feasible for real-time monitoring

as the process executes.

3. Efficient Resource Usage: Not all processes within the system are necessar-

ily monitored. Thus, the currently executing process may be one such non-

monitored process, while a process on the ready queue can be a monitored one.

In this case, the monitoring operations can be performed on the “ready” mon-
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itored process at a time where the monitoring hardware would otherwise have

gone unused.

4. Bad I/O Detection: Processes often times are waiting to receive data from some

external source. As such a process is waiting, the state of the process can be

recorded. After the process’ I/O operation is complete and the process is waiting

on the ready queue, the process could then be checked to determine if the I/O

operation has damaged the process via a buffer overflow or some other form of

input that may break the code. If detected, the recorded state gathered while

the process resided on the I/O queue can be used to repair the damaged process.

5. Deadlock Detection: Synchronization mechanisms are implemented as a means

to prevent multiple processes from accessing shared resources. However, in

preventing simultaneous access to shared resources, the possibility of introducing

a deadlock condition arises. While a process is waiting for a process to release

a resource, it is placed on a waiting queue. Thus, using a second MMU in the

SMU to check the state of processes as they wait on the waiting queue could be

used to determine if a deadlock condition on the PPU currently exists.

It is also important to note that all of these capabilities apply to both kernel-level and

user-level processes. Additionally, multiple monitored processes may be on the ready

queue at any one time. For this reason, it may even be desired to include multiple

secondary MMUs to be able to quickly and efficiently monitor multiple virtual memory

spaces. This may be especially useful for item 5 presented above.

79



IV. Research Platform and Implementation

T
his chapter details the implementation of the architectural concepts proposed

in Chapter III. To that end, we describe the hardware and software environ-

ments of the development platform upon which all implementations are constructed.

We then discuss the details of implementing the various primitives on that platform.

It should be noted that not all of the proposed primitives were able to be imple-

mented using the development platform. In such cases, we discuss what is needed to

implement these concepts, had the development platform allowed.

4.1 Purpose of Implementation

Implementation is done in order to demonstrate the functionality of the pro-

posed primitives. In so doing, we help to validate our research hypothesis. The

primitives are implemented in such a way as to adhere to the architecture proposed

in chapter III. Although a number of the primitives are designed to be able to work

simultaneously with other primitives, each primitive is implemented individually in

order to show functionality as a proof of concept for that specific primitive. This is

done for simplicity as well as to show the modularity of our architecture. For concepts

that are not physically implemented, we describe what is required for such mecha-

nisms to be implemented and argue the soundness of such concepts despite the lack

of an actual implementation.
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4.2 Development Platform

For prototyping purposes, the Xilinx ML310 development board, which is built

around the Xilinx XC2VP30 Virtex-II Pro FPGA, is used. The XC2VP30 FPGA

contains two embedded PowerPC 405fx cores and supports multiple instances of the

Xilinx Microblaze softcore processor. The board itself contains a wide range of modern

interconnects allowing the use of DDR SDRAM, a compact flash (CF) card reader,

10 BaseT ethernet, and USB 2.0 for JTAG debug information. More standard I/O

interfaces such as serial (RS-232 UART), PS/2, and VGA are also present. It should

be mentioned that we use a serial port exclusively for connecting to the computer

where our development software resides. This allows commands and outputs to be

sent via a hyperterminal communication interface. For further detailed information

on the ML310 development board and the Virtex-II Pro FPGA, please refer to [65]

and [67], respectively.

4.2.1 Embedded Processors. The Virtex-II Pro can implement processors

based on both the IBM PowerPC and Xilinx Microblaze architectures. Both processor

types vary in complexity/capability and are discussed below. The Leon3 softcore

processor is also briefly described. Although the Leon3 processor is not a processor

directly supported by the development platform, we felt it important to mention as

it includes a number of capabilities that may be useful for future research efforts.

4.2.1.1 PowerPC 405fx. The Virtex-II Pro contains two IBM Pow-

erPC 405fx (PPC405) hardcore processors integrated directly within the FPGA fabric.
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As with all processors based on the PowerPC ISA, the PPC405 is a reduced instruc-

tion set computer (RISC) based on the von Neumann computing model. Although it

is integrated within the FPGA fabric, the PPC405 within the Virtex-II Pro retains

all of the same capabilities of its standalone counterparts. By today’s embedded pro-

cessing standards, the PPC405 is fairly sophisticated as it includes 16KB instruction

and data caches, floating point logic, and an MMU to provide support for virtual

memory and can operate at clock frequencies up to 400MHz. As such, the PPC405

can support multiprogrammed OSs such as Linux.

As two PPC405 cores are integrated into the XC2VP30, these processors can

be used simultaneously and in tandem to complete tasks benefitting from multiple

processors. However, the PPC405 does not implement cache coherency (i.e., the cache

of each PPC405 core is completely independent of the other). According to a Xilinx

engineer, a cache coherency mechanism may be able to be implemented, however, it

would be very slow. For this reason, the PPC405 processors can not be used in an

SMP fashion. This limits the PPC405 cores to only being able to execute different

bodies of code simultaneously or to operate in lockstep when in a multiprocessor

configuration. Such a configuration uses the two PowerPC processors to execute the

same code simultaneously, where one PPC405 core updates memory and I/O and the

other PPC405 core performs instruction/data integrity checks [43].

While the integrated PPC405 cores retain the same capabilities as their stan-

dalone versions, Xilinx has made some modifications to how the PPC405 cores interact

with the FPGA fabric. Such modifications are in the form of wrappers that encompass
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the PPC405 cores and are used to interface the PPC405 cores with Xilinx’s propri-

etary debugging hardware. These wrappers limit what pins are available to a system

designer. As such, not all pins of the PPC405 are available for access by a system

designer. Furthermore, the FPGA connects to the PPC405 cores only at the “pins”

of the PPC405 cores, thus not allowing any further visibility into signals within the

PPC405 core at any time other than when in a debugging mode. This limits the

flexibility of the PPC405 cores. Additionally, in order to keep the number of pins to a

minimum, certain signals, such as execution trace data, is output on a small number

of pins and must be decoded. This makes the retrieval of such state information less

than trivial. Due to such difficulties, the PPC405 is not well suited for our particular

applications despite its impressive specifications. More detailed information on the

PPC405 cores within the Virtex-II Pro FPGA can be found in [61,66].

4.2.1.2 Xilinx Microblaze 5.0. The Xilinx Microblaze 5.0 is a softcore

processor based on a Harvard architecture (i.e., separate instruction and data buses).

As with the PPC405, the Microblaze is a RISC-based processor, however, it only con-

tains a 5 stage pipeline. The softcore nature of the Microblaze allows it to be tailored

to a specific application. As such, features such as cache, the inclusion of a floating

point unit, and interrupt support are just a few of the features that can be configured.

This makes for a very flexible platform for prototyping. Additionally, the Microblaze

can even be augmented with application specific accelerators that tap directly into

the execution stage of the pipeline via fast simplex link (FSL) connections. This can
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greatly increase the performance of the Microblaze for a particular application. FSL

connections can also be used to connect multiple Microblaze processors together in

order to quickly share data.

Although the Microblaze is a simpler, albeit more flexible, design compared to

the PPC405, it does provide a basic computational capability. This makes the Mi-

croblaze well suited to embedded systems and for basic prototyping. The Microblaze

however, does not include an MMU of its own, so support for virtual memory is

non-existent as a result. It should be mentioned, however, that as the Microblaze is a

softcore processor, the processor has the potential to be modified to include an MMU.

Extending this to having two or more MMUs could allow the Microblaze processor to

act as part of an SMU that can perform virtual memory introspection via methods

discussed in Section 3.5.4.3. Despite lacking native MMU support, a custom version

of the Linux kernel, uCLinux, has been developed to run properly on the Microblaze.

As the Microblaze is a configurable softcore processor, I/O is not limited by a

physical pin packaging as is the case with the PPC405. This allows for almost every

signal within the Microblaze to be tapped into. Moreover, as headers that tap into

certain signals are generated when the Microblaze processor is synthesized, there is

no need to limit the number of I/O pins on the Microblaze, unlike with the PPC405

hardcores. This makes accessing processor state information much easier than the

PPC405 hardcores. For these reasons, the Microblaze is flexible while still providing

computational capabilities that suit our needs. As a result, the Microblaze softcore is
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used for implementations requiring a processor. Please refer to [68] for more detailed

information regarding the Xilinx Microblaze processor.

4.2.1.3 Leon3. The Leon3 is a softcore processor based on the Sun

Microsystems SPARC V8 architecture. One notable feature of this processor is that it

contains an MMU. As a number of concepts proposed in Chapter III rely on modifying

the MMU functionality of a processor, the Leon3 softcore processor may allow for

such modifications. The Leon3, however, is not compatible with Xilinx development

tools and adheres to the AMBA bus standard, rather than the CoreConnect Bus

Architecture used by the Microblaze and PPC405 processors. As a result, a completely

different development environment would have to be used.

4.2.2 CoreConnect Bus Architecture. Xilinx FPGAs support the CoreCon-

nect Bus architecture (CCBA). This feature allows the integration of the PPC405 and

Microblaze cores within the XC2VP30 FPGA. The CCBA is based on a master/slave

relationship with other system devices and supports three types of buses: the pro-

cessor local bus (PLB), the on-chip peripheral bus (OPB), and the device control

register(DCR) bus. The PLB is made for higher speed communication. As a result,

the PPC405 processors can only connect to the PLB. Local Memory (dedicated solely

to a PPC405 core) as well as a DDR SDRAM controller (available to all system de-

vices) can also connect directly to the PLB to allow PPC405 processors high speed

access to main memory. The OPB is slower compared to the PLB, and as a result

is responsible for connecting the majority of system peripherals to any instantiated
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PPC405 or Microblaze processors. Additionally, the OPB is the only bus to which

Microblaze processors can directly connect. The OPB also supports a DDR SDRAM

controller, for systems without a PPC405/PLB. The DCR allows configuration regis-

ters to be removed from a systems memory map in order to improve the bandwidth

of the PLB. Figure 4.1 shows an example of how the various pieces of the CCBA fit

together.

Figure 4.1: Example Embedded System Using Core Connect Bus Architecture

The PLB and OPB can be connected via PLB to OPB and OPB to PLB bridges.

As a result, a PPC405-based system can be implemented to closely resemble the

architecture of a standard personal computer, with the processor and memory residing

on the front-side bus (i.e., the PLB) and the system peripherals residing on the back-

side bus (i.e., the OPB). Additionally, the CCBA allows for multiple instances of these

buses to be created within a single system. As a result, nontraditional computing

architectures can be implemented to suit a particular application.
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4.2.2.1 Xilinx IPCores. Devices are instantiated on the PLB and OPB

as IPCores. IPCores implement specific entities within the embedded system. Any

device, whether it is a processor, memory, memory controller, I/O device, etc. can

be instantiated within a design by adding its corresponding IPCore to the system.

Most IPCores are specifically designed to attach to the PLB and OPB within the

system, so they are easily added to a design. Any processors that exist within the

system communicate to the various IPCores via memory mapped I/O. As an IPCore

is seen as an addressable device within the system, a driver is needed for IPCores

residing on either the OPB or PLB to operate. This applies even if a dedicated

OS is not explicitly loaded onto the embedded system. This is because any software

loaded onto the embedded system is loaded in conjunction with the Standalone Board

Support Package (BSP) unless an OS is specifically specified. The BSP is a set of

modules that allows code to access the on-chip/on-board capabilities, such as caching

and interrupts, in the absence of an OS [62].

Xilinx also includes a utility with their ISE Foundation known as CoreGen. The

CoreGen utility allows an embedded system designer to quickly design an IPCore that

can be used in an embedded system. IPCores created with CoreGen can be designed

to attach to the PLB or OPB. Cores that connect to a system bus through a specific

controller, such as a memory block, can also be implemented. It should be noted

however, that if creating an IPCore to connect to a system bus, a specific driver for

that IPCore must be created as well.
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4.2.3 Software Support. As the development board is based on a Xilinx

FPGA, we are constrained to using mostly Xilinx development tools. For the design

and construction of our embedded designs, the Xilinx ISE Foundation 8.2i and Embed-

ded Development Kit (EDK) 8.2i design environments are used. These environments

are described below. We also briefly touch on the embedded system debugging utility.

4.2.3.1 Xilinx ISE Foundation 8.2i. ISE Foundation 8.2i contains

the tools required to successfully design and implement logic designs for Xilinx FP-

GAs. These tools are tied together using the Xilinx Project Navigator. The Project

Navigator is an interface that provides for the creation and modification of logic de-

signs using the Verilog and/or VHDL hardware description languages. Additionally,

Project Navigator provides access to the entire Xilinx toolchain from design synthesis

to downloading a generated bitstream to the FPGA.

As ISE Foundation includes the basic tools needed to design and implement logic

in Xilinx FPGAs, the ISE is not intended to design and implement complete embedded

systems. Rather, the ISE is specifically suited for designing and implementing custom

logic designs. Designs requiring any kind of processing capability must use the Xilinx

EDK package. However, it should be noted that ISE projects can contain embedded

systems, however, these must be designed using the EDK and imported into the ISE

project. As a number of our primitives use custom logic connected to the inputs and

outputs of an embedded system, we extensively make use of this capability. Detailed

information regarding ISE Foundation 8.2i is located in [60].
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4.2.3.2 Xilinx EDK 8.2i. The Xilinx EDK 8.2i is an environment for

leveraging the tools and resources of the ISE Foundation in a way that provides for

the creation of entire embedded systems. As such, the ISE Foundation is required

for the EDK to be able to operate. Through the EDK, the designer has access to

the library of embedded processing cores and IPCore peripherals used for creating

embedded systems on Xilinx FPGAs. The EDK is a self contained package, and as a

result, a designer does not have to even directly use the ISE (via Project Navigator)

if only creating embedded systems and nothing more. The EDK also includes access

to the Xilinx synthesizer, allowing a system to be translated into a bitstream and

downloaded to the FPGA without having to use the Project Navigator included with

ISE Foundation.

As the EDK provides access to embedded system components, it also provides

an environment for manipulating the parameters and connections of the system. The

interface allows for the designer to control the number and type of processors, buses,

and peripherals within the system and how they are all interconnected. Also provided

is an interface to create, link, build, and debug software intended to execute on the

embedded system. Additionally, the EDK provides access to Xilinx XMD, which

is used to debug software as it executes on the embedded system. More detailed

information regarding the Xilinx EDK platform can be found in [63].

4.2.3.3 Debugging Using Xilinx XMD. For debugging purposes, the

XC2VP30 supports the Joint Test Action Group (JTAG) interface standard. As such,
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Xilinx’s debugging shell known as XMD can connect to any JTAG enabled device

within the system. This includes both the PPC405 and Microblaze processor cores,

however, Microblaze-based designs require that a Microblaze Debug Module (MDM)

IPCore be included in the system for XMD to be able to connect to the Microblaze

processor. As XMD connects to a JTAG supporting device, XMD only operates once

a bitstream has been used to configure the FPGA.

The XMD debugger is a command line driven interface that allows the designer

to input commands in order to control the operation of any processor cores imple-

mented in the current design. Standard debugging capabilities like stepping through

code, reading and writing specific memory locations, etc. are present. For a list of

XMD commands or details on how to use XMD, please refer to [63].

4.3 Linux Implementation

Linux is an open source operating system that has substantial industry support.

Since our concepts are intended to be applied to actual operating environments, Linux

was a natural choice for demonstrating the capabilities of our monitoring concepts.

As a result, we have implemented a Linux-based operating environment on both the

PPC405 and Microblaze processors. However, as complications with the Linux instal-

lations arose and design decisions were made, neither Linux installation is actually

used in conjunction with any of the implemented functional primitives. Despite this,

it is important to mention the work that has been done in regards to creating embed-
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ded systems that can support an environment based on the Linux OS. Such efforts

are described below.

4.3.1 Embedded Linux 2.4. As the PPC405 processor is popular in the

embedded community, an open source version of embedded Linux based on the 2.4

kernel for the PPC405 processor is available. Using information presented in [8, 30,

42], we successfully implemented embedded Linux on a PPC405-based system. The

tutorial detailing how this was done can be found in Appendix B.1. We were able

to partition a compact flash card to contain the boot, swap, and root filesystem

partitions. This provides access to a persistent storage medium similar to a hard

drive. The embedded Linux installation was also able to utilize the ethernet port

for network-based communications. Input and output was entirely console based

via a standard terminal (i.e., serial port communication) interface. As a result, the

Linux environment was very functional. However, for the reasons described in Section

4.2.1.1, the PPC405 is not used in any of our implementations. As a result, this

embedded Linux environment is not implemented in conjunction with any of the

implemented primitive

4.3.2 uCLinux. uCLinux is a version of Linux designed specifically to exe-

cute on processors lacking an MMU, and hence cannot utilize virtual memory. As a

result, uCLinux is the only Linux-based kernel that supports the Xilinx Microblaze

processor. Xilinx Provides the uCLinux sources files for compiling uCLinux for a

Microblaze-based embedded system. Xilinx also provides documents detailing how
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to set up the uCLinux cross-compiling environment and how to create a working

uCLinux kernel in [41,55].

uCLinux provides the same basic capabilities as embedded Linux on the PPC405,

however there are still a number of differences. The most significant of which is that

the Xilinx toolset did not provide the ability for mounting the root filesystem on the

compact flash card. Instead, uCLinux was intended to mount its filesystem to a RAM

disk created from the DDR SDRAM. As a result, all uCLinux kernel files resided in

volatile memory. As certain implementations may have required slight modifications

to the uCLinux kernel, this was not feasible since all changes to the kernel would be

lost if power was ever taken away from the system. It should be mentioned that the

uCLinux Kernel can access and use the compact flash as non-volatile storage, how-

ever, the bootloader provided with the uCLinux development environment did not

support custom commands that would have allowed a root filesystem to be mounted

on the CF card at system start up. As a result, a custom bootloader would have to

be created to support this - something we did not have the experience nor the time

to do. Due to this, uCLinux is not used any of the implementations.

4.4 Functional Primitives

The below sections detail the implementation of a number of primitives proposed

in III. Some of the primitives were not implemented due to limitations inherent in

current computer architectures. For the primitives that were not able to be imple-
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mented, we discuss how we intend such designs to operate and what capabilities would

be required to implement them.

4.4.1 Execution Policy Enforcement. The execution policy enforcement

module, discussed in Section 3.5.2.1, is implemented using a Microblaze softcore pro-

cessor as the PPU. The Microblaze connects to other peripherals within the system

such as the RS232 UART (serial port), Microblaze Debug Module, etc. via an OPB.

Rather than use DDR SDRAM as main memory, we opted to use 32KB of block

random access memory (BRAM) with an address space ranging from 0x00000000

to 0x00000fff. We chose to use BRAM because programs executing from the DDR

SDRAM must use a bootloader to actually load the program into memory and to

start its execution. As BRAM is created from the FPGA fabric itself, the BRAM

can be initialized when the bitstream configures the FPGA with our design, making

implementation easier. The BRAM itself connects to a Local Memory Bus (LMB)

and is dual ported, with one port connected to the data bus of the Microblaze and

the other port connected to the instruction bus of the Microblaze. Additionally, the

address space of both the instruction and data buses were made to overlap, so the

data and instruction sides can both access the entire 32KB memory space.

As can be seen in Figure 4.2, the SMU is implemented using two modules

- noex mem and noex mem en. Noex mem is a memory that correlates addresses

in the PPU’s memory space to whether or not those addresses are executable or

not. Noex mem en is the enable logic for noex mem. It ensures that the noex mem
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Figure 4.2: Program Counter Monitor Implementation

module is active only when the process it monitors is currently executing. Each

module is constructed of RTL using the VHDL programming language. Please refer

to Appendix A.1 for all VHDL code pertaining to the implementation of the execution

policy monitor.

Noex mem is an instance of BRAM containing 32768 memory locations. The

number of memory locations is a limitation of the platform we are using, as the BRAM

editor of Xilinx’s CoreGen utility only allows the construction of a BRAM core with

a maximum depth of 15 bits. As the memory space where our program will execute

ranges from 0x00000000 to 0x00007fff, the PC of the executing code will only reside

within that range. Therefore, the address range of the PPU’s memory maps to the ad-

dress range of the noex mem module. As a result, we map the PPU’s PC trace signals

(Trace PC) to the address inputs of the noex mem module. Since the Trace PC signal
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consists of 32 bits, but the noex mem module has only 15 address pins, only the 15

least significant bits (Trace PC(14:0)) are connected to the noex mem module. Each

memory location is one bit wide, where “0” corresponds to an executable address and

“1” corresponds to a non-executable address. The output memory output connects

directly to the Microblaze’s external interrupt pin. As a result, if a non-executable

memory location is executed, the noex mem module will trigger an interrupt in the

PPU.

The noex mem en module can be implemented to enable the noex mem mod-

ule in a number of ways. As this implementation is proof of concept, we chose

the noex mem module to always be enabled. As such, the noex mem en module

is configured to output an enable signal when the 17 most significant bits of the PC

(Trace PC(31:15)) all equal “0”. This ensures that noex mem is enabled only when

PCs within the monitored address range are observed.

4.4.2 Multi-context Hardware Monitors. The multi-context monitoring con-

cept relies on revealing the PID of the processes executing on the PPU at a particular

point in time to the SMU. As mentioned in Section 3.5.1, the PID of each process

is managed by the OS scheduler. For the current process, the scheduler points to a

PID value stored in memory. This memory location resides within hardwired pages

of the OS, meaning that the PID of the currently executing process always resides at

a particular physical address. Consequently, that memory location can be monitored

in order to retrieve the current PID and determine the currently executing process.
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Rather than monitor memory itself by reading from a shared memory space, we tap

directly into the main memory bus in order to retrieve the current PID. A schematic

of our implemented multi-context hardware monitors concept is shown in Figure 4.3.

It should be mentioned that while the implementation of our multi-context concept

is displayed in terms of a structural block diagram, this is done purely for ease of

explanation. The actual VHDL code written to implement the SMU in this case was

written at the behavioral level. Connecting the SMU to the PPU was done at the

structural VHDL level, however. Please see Appendix A.2 for all VHDL code related

to this functional primitive.

Figure 4.3: Logical Implementation of PID Retrieval

The PPU is implemented using a Xilinx Microblaze softcore processor with

access to a 32KB local memory via an LMB, which is used to store the instructions
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and data of the test program executing on the Microblaze. The PPU also has access

to 128MB of DDR SDRAM for main memory. Access to memory occurs via an OPB,

which acts as the main memory bus in this implementation. Other peripherals within

the system such as as the RS232 UART (serial port) and general purpose I/O are

also connected to this OPB as well.

We tap directly into the main memory bus that the PPU is connected to in

order to be able to view the PID of an executing process. As the PID capture logic

requires access to the OPB to do this, the PID capture logic can be implemented

as either an IPCore or as RTL. While implementation as an IPCore is most likely

feasible to retrieve the PID from the OPB, we have opted to implement this particular

primitive as RTL. We do this for a number of reasons: 1) ease of implementation,

2) guaranteed performance, and 3) to limit the PPU’s visibility of the PID capture

logic. Implementing the PID capture logic as an IPCore would have required the

creation and use of a hardware driver. As tapping directly into a bus does not require

a driver in this application, we opted to keep the implementation simple by using only

RTL. Using RTL also makes it easier to ensure that the PID capture logic responds

near instantaneously (within a single clock cycle) in a consistent fashion. Lastly,

implementation as an IPCore makes the monitoring logic an addressable peripheral

residing on the OPB. This would have made the PID capture logic visible to the PPU

and would have required explicit communication with the PPU to even operate.

To retrieve the required information from the memory bus, the RTL taps directly

into both the address (OPB ABus) and data (OPB DBus) lines of the OPB. We also
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tap into the read-not-write (OPB RNW) line, which is used to indicate whether a

read or write operation is occurring on the OPB. The physical address corresponding

to where the PID is stored is hard-coded into the RTL and is signified by the “PID

Mem Register” (PMR) block in Figure 4.3. As we have visibility into the OPB ABus

signal, we compare it to the value stored in the PMR block to determine if the memory

location containing the current PID is being accessed. When accessed, the compare

logic will assert an enable signal to the Current PID Register (CPR). If the OPB RNW

signal is “0” (signifying a write operation) while the enable signal is asserted, the CPR

latches the value currently on the OPB DBus lines. This stored value corresponds

to the PID of the newly executing process and will not change until another context

switch occurs. The newly latched current PID value is then compared with values

in a table containing PIDs corresponding to monitored processes. If the current PID

matches one of the stored PIDs, an interrupt specific to that process is signaled. If

the current PID does not match, no action is taken.

As mentioned in Section 3.5.1, there are three scenarios in which the PID is

useful for monitoring, namely: monitoring a single process among many processes,

monitoring many processes with a single monitor, and monitoring multiple processes

with multiple monitors. Our specific implementation focuses on the latter case, as it

is the most complex. As such, the table of PIDs corresponding to monitored processes

contains two entries - the output of which is a single select signal for each PID. As this

is a proof of concept, these select signals are not connected to actual monitors, but

rather they are used as external interrupts connected the PPU. This allows us to verify
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Figure 4.4: An Example of Monitoring Multiple Processes With Multiple Monitors

the operation of our PID capturing scheme, while not having to actually implement

specific monitors. However, Figure 4.4 does provide an example of an SMU with

multiple monitors monitoring multiple processes. Furthermore, as the Microblaze

only supports a single interrupt natively, an interrupt controller is required for the

Microblaze to be able to discern between the two interrupts.

4.4.3 Peripheral Access Control. The peripheral access control concept pre-

sented in Section 3.5.3 was not implemented on the development platform, however,

we did generate a design that we believe can implement such a monitor. The proposed

peripheral access control monitor is depicted in Figure 4.5.
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In order to determine if a process has the rights to access a particular periph-

eral, two tables are utilized: the Peripheral Access Table (PAT) and the Peripheral

Map Table (PMT). The PAT stores the PID of all monitored processes and correlates

them to a peripheral access code that represents what peripherals within the system

the process is permitted to access. The PMT associates a range of addresses (corre-

sponding to the memory map of the peripherals) to a logic vector (i.e., the peripheral

code). Figure 4.6 depicts an example of both the PAT and PMT. The peripheral

access code is shown as having eight bits, where each bit represents a device in the

system. As a result, eight peripherals would be supported in this system. A value of

“1” denotes that the process is allowed to access the corresponding peripheral and a

“0” denotes no access.

When a process accesses a particular memory address, the PAT and the PMT

output the peripheral access code and the peripheral code, respectively. A logical

AND function is used to compare these two values in order to determine if the current

process is allowed to access the peripheral. If access is allowed, at least one of the

outputs of the AND gate will be “1”. An logical OR function is then used to reduce

the outputs of the AND gate to a single value which is then inverted. If the process

is not allowed to access the particular address, the SMU will trigger an interrupt on

the PPU. Additionally, it should be mentioned that as a process may access addresses

not corresponding to a system peripheral, such addresses must be listed in the PMT

with a corresponding peripheral code containing all “1”s. As a result, such addresses
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Figure 4.5: Planned Peripheral Access Control Implementation

will cause the output of the AND gate to always contain a “1”, thus ensuring that

the SMU will not trigger an interrupt for such memory accesses.

For example, if the process corresponding to PID #1 of the PAT in Figure 4.6

attempts to access a peripheral at the address range 0x0010-0x001f, the operation

would be allowed to continue since performing a logical AND of the access code

(01000000) with the peripheral code (01000000) results in at least one bit value being

“1”. However, if the process with a PID of “1” tried to access the peripheral at 0x0000-

0x000f, the operation would not be allowed as the resulting AND would produce all

“0”s. Additionally, the process corresponding to PID #8 would be allowed to access
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Figure 4.6: PAT and PMT Example

all peripherals within the system as a logical AND of its access code and any peripheral

code will always result in at least one bit value being “1”.

4.4.4 Asymmetrically Shared Main Memory. To realize the asymmetrically

shared memory concept proposed in Section 3.5.4.1, we implement both the PPU and

SMU using Microblaze softcore processors. This is done since the Microblaze can

easily access memory. 128MB of DDR SDRAM is used as the shared memory. Access

to the shared memory is provided by a multi-port memory controller described below.

4.4.4.1 Multi-Port Memory Controller. A Microblaze processor typi-

cally accesses the DDR SDRAM by physically residing on the same OPB as the DDR

SDRAM controller. If multiple processors require access to memory, as in our case,

both processors would reside on the OPB as the DDR SDRAM controller. However,

due to how the DDR SDRAM controller functions, there is no way to allow different

processors to have access to different regions of memory. Moreover, even if the DDR

SDRAM controller did allow this, there is still the issue of creating regions of memory

with varying privilege levels. As a result, the default DDR SDRAM controller that
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Xilinx provides with its development suite cannot be used in this implementation.

Instead, a multi-port memory controller developed by Xilinx is used. This multi-port

memory controller can provide multiple processors access to varying memory regions.

The multi-port memory controller we use is the Multi-Port Memory Controller

2 (MPMC2) developed by Xilinx. It was originally designed for applications requir-

ing high performance access to memory in multiprocessor embedded applications.

Although our application does not necessarily require high performance access to

memory, it does allow us to connect multiple processors to a DDR SDRAM module

and control the region of memory that each processor can access. A diagram of the

MPMC2 is shown in Figure 4.7 below.

Figure 4.7: MPMC2 Basic Organization

The MPMC2 connects to devices within the embedded system through a number

of Port Interface Modules (PIM). Up to 8 PIMs can be utilized at any one time,

and each PIM supports connections to all buses supported by the CoreConnect Bus

architecture, as well as the Xilinx Cache Link (XCL) and Communication Direct
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Memory Access Controller (CDMAC) interfaces. Furthermore, custom made devices

that do not reside on a CoreConnect supported bus can be connected directly to a

PIM using the Native Port Interface (NPI). For more information regarding the design

of the MPMC2 and how to configure a system utilizing it, please refer to [69–71].

4.4.4.2 System Construction. While certain regions of our asymmet-

rically shared main memory concept can apply to a non-contiguous memory space,

as was pointed out in Section 3.5.4.1, for the ease of prototyping, the asymmetrically

shared memory is implemented using contiguous regions. A logical view of the mem-

ory space as seen by both the PPU and the SMU is displayed in Figure 4.8 (not drawn

to scale). In order to make the SMU’s memory space invisible to the PPU (keeping

the SMU as secure as possible), the software on the PPU is limited to addressing only

a 64MB portion of the 128MB of available physical memory space. This is accom-

plished by configuring the PIM connecting the PPU to the MPMC2 to only be able

to access memory ranging from address 0x00000000 to address 0x03ffffff. The SMU

attains visibility into the PPU’s memory space by configuring the PIMs connecting

the SMU to the MPMC2 to have access to the entire physical memory space (i.e.,

ranging from address 0x00000000 to address 0x07ffffff). As such, the SMU has access

to its own contiguous memory space while still being able to access the PPU’s memory

space for security related monitoring. While this serves to distinguish what regions of

memory are visible to the PPU and the SMU, it does not fully provide for the varying

permission levels associated with the different regions.
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Figure 4.8: Memory Map and Permissions as Viewed by the PPU and the SMU

The regions of varying permissions are dependent on how the PPU and SMU are

physically connected to the MPMC2. Figure 4.9 depicts the physical architecture of

our asymmetrically shared memory system. As mentioned previously, the PIM that

connects the PPU’s OPB is configured to only allow access to addresses ranging from

0x00000000 to 0x03ffffff. This is done by connecting both the data and instruction

buses of the PPU to the MPMC2 via a single OPB. In so doing, the PPU has read,

write, and execute privileges for its memory space.

The Harvard architecture of the Microblaze processor is leveraged to create the

different regions of varying permissions that the SMU has access to. As a Harvard

architecture has separate data and instruction buses and memories, any addresses

associated with the data side can only be used to read and write data, while addresses

associated with the instruction side can only be used to read instructions (i.e., such

memory locations are executable). Thus, the permissions of varying regions of memory

are controlled by mapping the instruction and data buses of the SMU to different

regions of memory. This is accomplished by mapping the data and instruction buses

of the SMU to different OPBs. This allows the instruction and data buses of the SMU
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Figure 4.9: Asymmetrically Shared Memory Implementation

to be connected to separate PIMs - each with a different address range. As such, the

SMU’s data-side PIM is configured to allow access to a 256MB address space. The

first addressable 128MB ranges from 0x00000000 to 0x07ffffff and, as a result, the

SMU has read/write access to the entire shared memory. The second 128MB ranges

from 0x08000000 to 0x0fffffff and allows for peripherals to connect to the SMU’s

data-side OPB. Additionally, the SMU’s instruction-side PIM is configured to allow

access to a 32MB portion of the shared memory ranging from addresses 0x06000000

to 0x07ffffff. As a result, this region of memory allows the SMU to not only read and

write data, but to read instructions as well, making this region of memory executable.
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By configuring our system in this manner, we produce the asymmetrically shared

memory space depicted in Figure 4.8.

4.4.4.3 Application Example - Enhanced CoPilot System. Without

the aid of other primitives, our asymmetrically shared memory system allows the

SMU to have direct access into the physical memory space of the PPU. As a result,

this system can be used to implement the same capabilities as the CoPilot system

that was discussed in Section 2.6.2.2. Whereas CoPilot uses an add-in-card (with its

own dedicated memory) and monitors the production processor’s memory space via a

PCI bus, our implementation sacrifices some of the memory available to the PPU in

order to allow the monitoring coprocessor to reside in the same physical chip package

as the PPU. As is the case with CoPilot, by itself, our implementation would still

be limited to only being able to monitor the pages that are hardwired into memory.

However, this monitoring capability can be extended to the virtual memory space

by also implementing our MMU co-opting or multiple MMU concepts presented in

Sections 4.4.5 and 4.4.6, respectively. Additionally, as the SMU resides at the same

logical level as the PPU, the SMU has the ability to exert control over the PPU.

As a result, using the asymmetrically shared main memory in the manner proposed

here can remedy one of the largest shortcomings of the CoPilot system. Additionally,

the asymmetrically shared main memory allows the SMU to have access to main

memory without having to contend with other system peripherals - the constraining
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factor causing CoPilot to perform monitoring only every 30 seconds. As a result, our

approach could provide monitoring at a faster rate than that of the CoPilot system.

4.4.5 Co-opted Memory Management Unit. As we do not have access to

a softcore processor containing an MMU, the MMU co-opting concept, presented in

Section 3.5.4.2, cannot actually be implemented at this time. Rather, we discuss what

we believe will be required in order to provide such a capability.

4.4.5.1 Hardware Support. The SMU gains visibility into the memory

space of the currently executing process by querying the PPU’s MMU to translate a

virtual address provided by the SMU. This will result in the retrieval of the data at

the specified virtual address. The architecture we propose for doing this is shown in

Figure 4.10.

Figure 4.10: Proposed Co-opted Memory Management Unit Architecture
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In order for the SMU to be able to determine what process is accessing memory

and where, two pieces of state information are needed - the PID and the effective

address. The PID indicates what process the PPU is currently executing, allowing

the SMU to determine if the code currently executing corresponds to a monitored

process. The PID can be gathered via methods presented in 4.4.2. The effective

address corresponds to the address within the current virtual memory space, which

is used to indicate what virtual memory address is currently being accessed by the

PPU. Gaining insight into both of these pieces of state information can give the SMU

visibility into how the PPU is executing a particular process, however it does not

provide the SMU itself with visibility into the current virtual memory space.

Visibility into the virtual memory space of the currently executing process is

provided by co-opting the PPU’s MMU. When a monitored process accesses a virtual

address containing a key data structure, a control signal is first sent from the SMU

to the PPU notifying the PPU that its MMU is about to be co-opted. At this point,

any memory operations currently in progress are allowed to complete so as to not

corrupt any data. As the SMU will be sending a virtual address to the PPU’s MMU

and an address (in the form of data) in return, the SMU must have direct connections

from its address and data lines to the PPU’s MMU. As a result, when the MMU is

co-opted by the SMU, the address and data lines of the SMU connect to the PPU’s

MMU, rather than to the memory bus. Additionally, at this time the PPU will have

no access to the MMU. As a result, either the entire PPU must be halted or the PPU

can continue execution so long as no memory access instructions are executed. It
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should be noted that this will most likely require a change to the control logic of the

PPU as the MMU may not function if the rest of the PPU is halted.

Now that the SMU has exclusive access to the PPU’s MMU, the SMU can send

the monitored virtual address to the MMU. As the MMU is still linked to the virtual

memory space of the currently executing process, the MMU will translate the virtual

address to a corresponding physical address which is then transmitted to the SMU.

It should be noted, however, that the PPU’s MMU must be modified to be able to

return the physical address, as the MMU usually performs translation for specific

memory operations. Once the SMU has received the corresponding physical address,

the SMU sends a control signal that relinquishes the SMU’s control of the MMU and

resumes the PPU’s execution of the process.

Once the SMU has retrieved the physical address of the data structure in ques-

tion, the physical address can be used by the SMU to access the desired data and

any necessary checks can be performed. This assumes that the SMU has visibility

onto the PPU’s physical memory space. This can be done using a method like the

asymmetrically partitioned main memory concept described in 3.5.4.1.

4.4.5.2 Software Support. When the SMU co-opts the PPU’s MMU,

the PPU can either halt entirely, or execute instructions until a memory access in-

struction is encountered. As this is controlled in hardware by the SMU, the code

being executed on the PPU should have no awareness of the MMU’s ability to be

co-opted. Thus, no changes should be required to the software/OS executing on the
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PPU to enable such a capability. However, as the the SMU needs to be able to access

a device (i.e., the MMU) in a particular way, this will most likely be implemented

by a new instruction made specifically for co-opting another processor’s PPU. As a

result, the OS/software executing on the SMU must be aware of such a capability,

but the changes required to do so should not be very extensive.

4.4.6 SMU with Multiple MMUs. The multiple MMU concept, presented

in Section 3.5.4.3, cannot actually be implemented at this time. This is due to the

architectural limitations of the processors available to us. As a result, we discuss what

we believe will be required in order to provide visibility into the virtual memory space

of monitored PPU processes by incorporating multiple MMUs into the SMU.

4.4.6.1 Hardware Support. In Intel’s IA-32 architecture, an MMU

accesses the virtual memory space of a particular process by updating Control Register

3 (CR3) with a physical address that points to the page directory of a particular

process [25]. This allows any memory accesses by the currently executing process to

have access to its virtual memory space. The CR3 register is updated implicitly when

the OS scheduler performs a context switch to begin execution of another process,

however, it can also be explicitly updated via an instruction integrated in executing

code [25]. As a result, we can specifically control what virtual memory space the MMU

accesses to perform virtual address translation so long as the address corresponding

to the desired page directory is known. We believe this capability can be leveraged in

such a way as to allow the SMU to have access into the virtual memory space of the
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PPU. In order to do so, however, a number of architectural changes need to be made

at the processor level.

Unlike the MMU co-opting concept detailed in 4.4.5, our multiple MMU concept

provides the SMU visibility into the PPU’s virtual memory space by using the SMU’s

own hardware resources rather than tapping into the hardware resources of the PPU.

As a result, the architectural changes are primarily targeted at the processor being

used to implement the SMU. The most blatant of these changes is the addition of

at least another MMU to the SMU. Thus, the SMU contains a single primary MMU

and one or more secondary MMUs. The primary MMU is used for servicing memory

accesses made by the monitoring code executing on the SMU itself. As such, the

primary MMU fetches instructions and data to execute code executing on the SMU,

thereby fulfilling the same role as an MMU in any other processor supporting virtual

memory. The secondary MMU(s) are only used to gain access to the virtual memory

space of PPU processes, therefore, the secondary MMU(s) do not fetch executable

instructions. This helps to prevent the SMU from being compromised as potential

malicious instructions gathered from the PPU’s memory space cannot be executed by

the SMU.

As the primary MMU and secondary MMU(s) perform different roles within the

SMU, added instruction support is required. The obvious instructions to be added

are load and store instructions that specifically leverage the secondary MMU(s). For

this to occur, additional load-store memory access units must be added to the SMU’s
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pipeline. These additional load-store units only operate on instructions that leverage

the secondary MMU(s).

Although multiple MMUs are used to access the PPU’s virtual memory space,

virtual memory maps to physical memory. Therefore, it goes without saying that

the SMU must have access to the PPU’s physical memory space. As a result, the

SMU and the PPU must share memory. For the protection of the SMU itself, the

shared memory should adhere to the model discussed in 3.5.4.1. This provides the

SMU access to the PPU’s memory space, while keeping the SMU’s memory space

invisible to the PPU. As mentioned previously, since a secondary MMU cannot fetch

instructions for the SMU, the SMU is physically protected from executing possibly

malicious code that may be retrieved from the PPU’s memory space as a result of

monitoring. This provides for non-executable regions of the asymmetrically shared

memory model to be implemented.

While we have described the hardware-level changes that must be made in order

to gain visibility into the PPU’s virtual memory space via our multiple MMU concept,

we have not discussed the hardware support that is required for the SMU to know

when to leverage that visibility. The SMU (invisibly) gathers PID and effective ad-

dress state information from the PPU via hardware-based methods discussed in 4.4.2.

This state information is used by the SMU to determine when a particular process

is executing on the PPU and when that process accesses specific virtual addresses.

It should also be mentioned that, as the page directory address is different for every

process, there is a 1:1 mapping between the PID and the page directory address. As a
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result, a page directory address can be used to determine the identity of the currently

executing process. This assumes that the SMU has knowledge of the particular page

directory address in question as well as knowledge of what process it corresponds

to. For the SMU to acquire information regarding a process’ page directory, software

support is needed. Software changes are also required in order for the SMU to be

able to monitor currently non-executing processes. These software-level changes are

discussed below.

4.4.6.2 Software Support. While the multiple MMU concept provides

the SMU visibility into the PPU’s virtual memory space, this is dependent on the

SMU having the address of the page directory corresponding to the desired virtual

memory space. As each process has a unique virtual memory space, each process’ page

directory address is unique. This address can be explicitly communicated to the PPU

when a monitored process is created. This communication should only be handled

by a kernel level process on the PPU. Furthermore, the kernel should be in a known

trusted state, so it can be assured that the value has not been altered for malicious

purposes. This is similar to the creation of a monitored process in CuPIDs [59].

Although multiple MMUs can provide for monitoring processes that are not cur-

rently executing, the SMU must have information regarding whether the process(es)

in question are on either the ready, I/O, or waiting queues. The concept of queues,

however, is a software-level construct that is controlled by the OS, and as a result,

cannot be determined at the hardware level. Thus, changes to the OS executing on
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the PPU are required to notify the SMU when a particular process goes on a cer-

tain queue. This requires some explicit communication from the PPU to the SMU.

As the OS scheduler coordinates the processes on the queues, it is most likely that

the scheduler itself would control such communication as it schedules processes for

execution. It should also be noted that although the ability to monitor processes not

currently executing relies on software-level changes, for security purposes, dedicated

logic connecting the PPU and the SMU should be used, rather than communicating

this over the front-side bus.

Changes pertaining to the SMU’s OS/software that help to enable the multiple

MMU concept are minimal compared to the changes required for the PPU’s OS/-

software. As mentioned previously, new instructions are required for the SMU to be

able to leverage the secondary MMU(s). Although these instructions are physically

implemented as logic in the SMU, the OS/software executing on the SMU must be

aware of these new instructions in order to take advantage of them. As a result, the

software executing on the SMU needs to be coded with these instructions in mind.
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V. Testing and Results

I
n this chapter we present the testing methodology and results of the implemented

primitives. As the proposed functional primitives are implemented as proof of

concept, simulation and testing are primarily functional in nature. For this reason,

we integrate the testing methodology, any simulations, and implementation results

into a single chapter. It should be noted, however, that a number of the primitives

were not implemented and/or tested. In such cases, we explain the reasons that

attributed to this and comment on the expected results.

5.1 Execution Policy Enforcement Module

The execution policy enforcement module was successfully implemented on the

development platform. As such, logic simulation and actual testing was able to be

performed, the results of which are described below.

5.1.1 Testing Methodology. Testing for this primitive is functional in order to

show proof of concept. As described in Section 4.4.1, the execution policy enforcement

module monitors the PC of the code currently executing on a Microblaze processor.

Monitoring is performed by the non-executable memory module, the output of which

acts as an interrupt for the Microblaze processor. As a result, there are a number of

cases that we test to ensure proper operation of execution policy enforcement logic.

These test cases are described below.
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1. Executable Instruction: This case tests the output of the of the execution policy

enforcement module when an executable instruction executes. If implemented

correctly, the interrupt will not be triggered.

2. Executable Instruction Follows an Executable Instruction: This case tests the

output of the execution policy enforcement module when an executable instruc-

tion executes after an executable instruction. If implemented correctly, the

interrupt will not be triggered.

3. Non-Executable Instruction Follows an Executable Instruction: This case tests

the output of the execution policy enforcement module when a non-executable

instruction executes after an executable instruction. If implemented correctly,

the interrupt will be triggered.

4. Non-executable Instruction Follows a Non-executable instruction: This case

tests the output of the execution policy enforcement module when a non-executable

instruction executes after a non-executable instruction. If implemented cor-

rectly, the interrupt will continue to be triggered.

5. Executable Instruction Follows a Non-executable Instruction: This case tests

the output of the execution policy enforcement module when an executable in-

struction executes after a non-executable instruction. If implemented correctly,

the interrupt will no longer be triggered.

5.1.2 Simulation. Simulation of the execution policy enforcement module

was performed only for the logic implementing the monitoring mechanism. The em-
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bedded system connected to this logic in the implementation was not part of the

simulation, since the functionality of the execution policy enforcement module can be

tested without the use of the embedded system. As such, the logic has two inputs -

clock and pc bits, and one output - mb int. The clock signal is self explanatory. The

pc bits signal represents the program counter trace that is output from the Microblaze

processor during execution. The mb int signal is the interrupt signal used to signal

when a non-executable instruction has been reached. The waveforms corresponding

to these signals can be found in Figure 5.1 below.

Figure 5.1: Execution Policy Enforcement Simulation Result

The simulation uses a 50ns clock cycle. The pc bits test waveform input is

made to resemble a malicious event. This is done by the waveform incrementing

the pc bits value as if it were executing sequential code that suddenly jumps to a

malicious region of code. This is represented by pc bits changing from 20 to 80 in the

simulation waveform above. The “malicious code” executes by the pc bits waveform

incrementing from 80 to 92. The pc bits value then changes to 24, representing a

return to the valid stream of instructions.

The non-executable memory module (noex mem) is initialized for all program

counter values 80 and above to be non-executable. As a result, any PC value of 80 and

above should set the mb int signal. As can be seen in Figure 5.1, this is confirmed
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as mb int raises from “0” to “1” when pc bits becomes 80. Subsequent malicious

instructions (i.e., pc bits ranges from 84 to 92) continue to keep mb int set. The

mb int signal then returns to “0” when the “malicious code” returns to the original

stream of instructions via the pc bits value being 24. It is also important to note that

the simulation shows that the execution policy enforcement module can respond in

under one clock cycle of receiving a PC value.

5.1.3 Implementation Results. Similar to the simulation above, we created

code to test the the functionality of the execution policy enforcement module. The

code we used is as follows:

//interrupt service routine//

void noex_int_handler(void *arg) {

print("No-Execute Memory Location Reached!");

}

int main (void) {

microblaze_enable_interrupts();

print("-- Entering main() --\r\n");

print("-- About to jump to non-executable memory location--\r\n");

__asm__("bri 0x0400");

}

print("-- Exiting main() --\r\n");
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return 0;

}

As can be seen, the code consists of two “print” statements, followed by a “bri”

inline assembly instruction, followed by a final “print” statement. The code is simple,

but is intended to work in the same way as the simulation’s pc bits waveform. The

“bri” instruction is an unconditional branch to the specified address. Thus, as soon

as this instruction is reached the PC should branch to address 0x0400. We set the

jump to this address because this memory location resided just outside of the code’s

text segment. This ensures that the addresses that we deem as “non-executable” are

not real instructions that are supposed to be executed by the code. Additionally,

the noex mem VHDL module was configured to mark addresses 0x0390 to 0x0500

as non-executable. Thus, when the unconditional branch updates the PC to 0x0400,

the noex mem module should output an interrupt, which the Microblaze receives,

signalling the Microblaze to execute the code located in the interrupt service routine

at the top of the code segment.

Upon executing this body of code, however, the hyperterminal (used to display

the output) displayed the first two “print” statements in the main body of the code

over and over in an infinite loop. Other addresses outside of the text segment were

attempted, but the same result was observed. This is most likely being caused by

an exception within the Xilinx standalone BSP that gets loaded to the FPGA along

with this code. We also attempted to jump to addresses within the code’s text seg-

ment, however, this resulted in crashing the program. As a last resort, we modified
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the configuration of the noex mem module to mark the entire text segment as non-

executable so as to make sure instructions being executed would trigger an interrupt.

Re-executing the code resulted in the interrupt service routine being executed in an

infinite loop. Although it was shown to work under a less than optimal test case,

we were able to show that the implemented execution policy enforcement module

functions properly.

5.2 Multi-context Hardware Monitors

The multi-context monitoring concept was able to be implemented on the de-

velopment platform. As such, simulation was performed, however, actual testing was

not able to be conducted. In this section, we describe our testing methodology, sim-

ulation results, and the issues encountered that prevented us from performing actual

functional testing.

5.2.1 Testing Methodology. Testing for this primitive is functional in order

to show proof of concept. As described in Section 4.4.2, the multi-context monitoring

design monitors a specific memory address for specific PID values in order to determine

the currently executing process. As not all attacks change the control flow of the

targeted program, the address where the PID value resides and the values of the

monitored PIDs themselves are all arbitrary in our testing. Similar to how execution

policy enforcement was tested in Section 5.1, interrupts connected to the Microblaze

processor (i.e., the PPU) are used to notify when a PID value matches that of a

monitored process.
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Testing consists of a number of memory accesses that read and write varying

data values to a number of memory addresses to demonstrate the functionality of

the multi-context monitoring implementation. As a result, the following cases will be

tested in the order in which they are listed below.

1. System Initialization: This case tests the output of the interrupts when the

system initializes (i.e., the reset condition). If implemented correctly, neither

interrupt will be triggered.

2. Writing to an Arbitrary Memory Location: This case tests the output of the

interrupts when a write request is made to an address other than the address

where the PID is stored. If implemented correctly, neither interrupt will be

triggered.

3. Reading From an Arbitrary Memory Location: This case tests the output of the

interrupts when a write request is made to an address other than the address

where the PID is stored. If implemented correctly, neither interrupt will change

from their previous state.

4. Reading the PID as a Non-monitored Process Executes: This case tests the

output of the interrupts when a memory location is read and a monitored process

is not executing (i.e., when both interrupts are “0”). If implemented correctly,

neither interrupt will change from their previous state.

5. Writing the First Monitored PID to the PID Address: This case tests the output

of the interrupts when a PID corresponding to Monitored Process #1 is written
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to the PID address. If implemented correctly, interrupt A will be triggered,

while interrupt B will be not be triggered.

6. Writing the Second Monitored PID to the PID Address: This case tests the

output of the interrupts when a PID corresponding to Monitored Process #2 is

written to the PID address. If implemented correctly, interrupt A will not be

triggered, while interrupt B will be triggered.

7. Reading the PID as a Monitored Process Executes: This case tests the output

of the interrupts when a memory location is read while a monitored process is

executing (i.e., when one interrupt signal is “1”). If implemented correctly, both

interrupt signals should not change from their previous state.

8. Writing a Monitored PID to an Arbitrary Memory Location as a the Other

Monitored Process Executes: This case tests the output of the interrupts when

a value matching the PID of a monitored process is written to a memory location

while the other monitored process is executing (i.e., when one interrupt signal

is “1”). If implemented correctly, both interrupt signals should not change from

their previous state.

9. Writing a Non-monitored PID after a Monitored Process has Been Executing:

This case tests the output of the interrupts when a non-monitored PID is written

to the PID address directly following the execution of a monitored process. If

implemented correctly, neither interrupt will be triggered.
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Although this is not an exhaustive test set, the number and type of tests chosen

are sufficient to prove the functionality of the multi-context monitoring implementa-

tion.

5.2.2 Simulation. Simulating the implementation of the multi-context mon-

itoring concept was performed only for the logic implementing the monitor. The

embedded system connected to this logic in our implementation was not part of the

simulation, since the functionality of the multi-context monitoring can be tested with-

out the use of the embedded system containing the PPU.

Figure 5.2: Multicontext Monitors Simulation Result

Figure 5.2 displays the simulation waveforms for our multi-context monitoring

implementation. Inputs include clock, addr, data, reset, and rnw. The addr and data

waves represent the address and data lines of the OPB respectively. The rnw wave is

the write enable line of the OPB, where a “0” represents a write to a particular memory

address and a “1” represents a read from a particular memory address. The clock and

reset signals are self explanatory. Outputs include int a and int b which represent

the interrupts for Monitored Process #1 and Monitored Process #2, respectively.

124



Each of the test cases mentioned previously in Section 5.2.1 correlate directly

to a 150ns slice of time in the simulation depicted in Figure 5.2. The address where

the PID resides is designated as 1024. All other addresses are arbitrary. Data values

representing PIDs range from 99-101, however, 100 corresponds to Monitored Pro-

cess #1 and 101 corresponds to Monitored Process #2. By following the test cases

described above, it can be seen that the all test cases are fulfilled. As a result, this

simulation has shown that the implementation of our multi-context monitoring con-

cept can determine the currently executing process and keeps track of it in the event

of other kinds of memory accesses. It should also be mentioned that the interrupt

signals - int a and int b - both update in under one clock cycle when the PID changes.

5.2.3 Implementation Results. Although we succeeded in implementing our

multi-context monitoring concept on the development platform, we were not able to

perform any real-world test cases. This derived from difficulties with the development

tools which did not allow for the design to be implemented given our time constraints.

Furthermore, once a change is made to a design, the bitstream used to program

the FPGA must be regenerated. Designs including an embedded Microblaze (as

this implementation does) required 20-25 minutes to generate the FPGA bitstream.

Although subsequent bitstream generations are faster than the original bitstream

generation (as some steps in the process do not need to be repeated), the debug

cycle is still long at 15 - 20 minutes to modify a bitstream. This somewhat faster

bitstream generation could not always be taken advantage of, however, as issues with
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the development tools required that the project be “cleaned” often, resulting in all

steps of bitstream regeneration having to be redone. This increased the average time

required for a single debug cycle.

5.3 Peripheral Access Control

The peripheral access control concept, described in 4.4.3, was not able to be im-

plemented on the development platform. This was not due to any particular difficulty

introduced by this monitoring concept, but rather, it can be attributed simply to time

constraints. Despite not being able to implement this concept, we still discuss the

expected results of this primitive based upon the results of other primitives tested.

5.3.1 Expected Results. The peripheral access control concept uses the

same techniques to gather the PID as the multi-context monitoring implementation

presented in Section 4.4.2. As it was shown in Section 5.2 that the PID could be

captured, there should be no reason as to why such a method would not work for the

purpose of implementing peripheral access control. Additionally, the peripheral access

table and the peripheral map table proposed for this concept can be implemented in

much the same way as the execution policy enforcement module that is described in

Section 4.4.1. As the execution policy enforcement module was shown to work in both

simulation and implementation in 5.1, it is safe to assume that the peripheral access

table and the peripheral map table can be implemented in a similar manner.
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Furthermore, despite simulations showing the execution policy enforcement and

multi-context monitoring implementations responding in under one clock cycle, we

cannot know for certain how fast peripheral access control will respond without im-

plementation and simulation/testing. However, we expect peripheral access control

to respond in no more than a few clock cycles as the concept is only mildly more

complex than the techniques used to implement execution policy enforcement and

multi-context monitoring.

5.4 Asymmetrically Shared Main Memory

The design of the asymmetrically shared main memory concept, detailed in

Section 4.4.4, was successfully implemented on our development platform. Time con-

straints, however, prevented testing from being able to be performed. Since the im-

plementation of this primitive is based on using a Microblaze as the SMU, not RTL as

is the case with the other primitives discussed thus far, simulation was not performed.

Accordingly, we present our planned testing methodology and the expected results

below.

5.4.1 Testing Methodology. Implementation of the asymmetrically shared

main memory concept, detailed in Section 4.4.4, a number of memory regions with

varying permission levels. Depending on the processor accessing memory at a given

time, each region has different permissions that dictate what kind of operations can

be performed. As a result, testing is functional in nature and focuses on ensuring that
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the permission level of the various regions are correctly enforced for both the PPU

and the SMU. We describe the applicable test cases below.

1. PPU Accessing PPU Memory Space: This case tests whether or not the PPU

can read data, write data, and execute instructions from its own memory space.

If implemented correctly, the PPU will be able to read, write, and execute from

its own memory space.

2. PPU Accessing SMU’s Memory Space: This case tests whether or not the PPU

can access the SMU’s memory space using any type of memory access (read-

/write/execute). If implemented correctly, the PPU will not be able to access

the SMU’s memory space.

3. SMU Accessing SMU Exclusive Memory Space: This case tests whether or not

the SMU can read data, write data, and execute instructions from the SMU

Exclusive memory region. If implemented correctly, the SMU will be able to

read, write, and execute from this region of memory.

4. SMU Reading/Writing Safe SMU Exclusive Memory Space: This case tests

whether or not the SMU can read and write to the Safe SMU Exclusive memory

region. If implemented correctly, the SMU will be able to read from and write

to this region of memory.

5. SMU Executing From Safe SMU Exclusive Memory Space: This case tests

whether or not the SMU can execute instructions from the Safe SMU Exclusive
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memory region. If implemented correctly, the SMU will not be able to execute

from this region of memory.

6. SMU Reading/Writing PPU Shared Memory Space: This case tests whether

or not the SMU can read and write to the PPU Shared Memory region. If

implemented correctly, the SMU will be able to read from and write to this

region of memory.

7. SMU Executing From PPU Shared Memory Spaces: This case tests whether or

not the SMU can execute instructions from the PPU Shared Memory region. If

implemented correctly, the SMU will not be able to execute from this region of

memory.

5.4.2 Implementation Results. The asymmetrically shared main memory

was successfully implemented on the development platform, however, testing was not

performed due to time constraints. Despite this, we are confident that our implemen-

tation of an asymmetrically shared memory will function correctly. This is because

the various regions of our asymmetrically shared memory concept are all enforced in

hardware. For example, the PPU connects to the MPMC2 via a single OPB, while the

SMU connects to the MPMC2 via two independent and separate OPBs - one for the

instruction-side and the other for the data-side. As we have set the PPU’s accessible

memory range to not include the SMU’s memory space, it is not possible for the PPU

to even address the SMU’s memory space. Thus, by virtue of how memory mapping

works and how we have leveraged the Harvard architecture of the Microblaze proces-
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sor to implement the regions of varying permissions, we expect with a high level of

certainty that the asymmetrically shared main memory implementation will function

correctly.

5.5 Memory Management Unit Co-opting

The MMU co-opting concept, detailed in Section 4.4.5, is a large departure

from traditional computer architecture design; no processor available, either in the

development platform or the computing industry, contains such a capability. As

a result, the MMU co-opting concept was not able to be implemented, either in

simulation nor in physical hardware. However, we do realize that our MMU concept

has a number of benefits as well as limitations. These are described below.

5.5.1 Benefits and Limitations. The MMU co-opting technique can theo-

retically provide the SMU access to the virtual memory space of a PPU process at

the hardware level. As a result, the SMU, not the PPU, controls the MMU co-opting

process. This, combined with the design decision to allow the SMU to co-opt the

PPU’s MMU only when the PPU is either not using the MMU or the SMU has halted

the PPU, keeps the SMU invisible from the PPU. Additionally, as this is being im-

plemented at the hardware level, this method can be used to gain insight into state

information unable to be gathered at the hardware level previously. This allows for

efficient parallel monitoring that can be performed in real-time as code executes on

the PPU. As a result, overhead associated with monitoring is expected to be reduced

compared to software-based methods. Additionally, as the SMU leverages the physi-
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cal addresses it retrieves from the PPU’s MMU, this assumes that the SMU not have

an MMU of its own. This makes the MMU co-opting concept ideal for situations

where chip area is at a premium, while still providing visibility into a process’ virtual

memory space.

Co-opting the PPU’s MMU is not without its limitations, however. One such

limitation of our MMU co-opting concept is that the control logic required to im-

plement such a capability may be significant. Additionally, as data in question is

accessed by the SMU after the PPU resumes operation, the physical address corre-

sponding to the data structure in question may change. This is a result of the dynamic

nature of virtual memory. To remedy this, the physical address of the data structure

in question should be retrieved every time the process begins and when the virtual

address in question is accessed. This could lead to inefficiencies as the SMU would be

requesting translation for a virtual address whose corresponding physical address has

not changed. This could be remedied by either retrieving the data when the MMU is

co-opted or by making the SMU access the physical memory address before the PPU

is allowed to resume operation. However, as the PPU may be disabled while the SMU

co-opts the MMU, both of these methods could increase the amount of time that the

PPU must remain halted, decreasing the performance of the PPU. Such performance

is dependent on the how often the SMU co-opts the MMU and how often the moni-

tored process on the PPU must access memory. Additionally, depending on the data

being monitored by the SMU, the data may have been moved to external memory.

As the PPU’s OS keeps track of where such data would reside, the co-opted MMU
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would have no access to such data since the PPU (and the OS) would be halted while

the SMU co-opts the PPU.

5.6 Multiple Memory Management Units

As with MMU co-opting, incorporating multiple MMUs into the SMU as pre-

sented in Section 4.4.6 is a significant departure from traditional computer architec-

ture design. This combined with time constraints did not allow for either a simulation

model or implementation to be created. Even without this, we can discuss a number

of the the apparent benefits and limitations of the proposed multiple MMU approach

below.

5.6.1 Benefits and Limitations. As with the MMU co-opting concept dis-

cussed in Section 5.5, implementing multiple MMUs can provide the SMU visibility

into the PPU’s virtual memory space. Doing so by integrating multiple MMUs can

provide a number of benefits. The most notable of these benefits is the ability to

monitor the processes that are not currently executing. This can provide for run-time

trustability as this method could be used to ensure a process is in a known trusted

state every time before it is placed on the PPU to be executed. Moreover, an SMU

with multiple MMUs can also allow for monitoring in different scenarios. Examples

of such scenarios include monitoring a process on the I/O queue for buffer overflow

attacks or monitoring multiple processes on a waiting queue to check for deadlock

conditions.
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Monitoring the PPU’s virtual memory space with multiple MMUs also shifts

the resource burden from the PPU to the SMU. As a result, the PPU does not need

to undergo many architectural changes, especially when compared to the changes to

the PPU required to implement MMU co-opting. Moreover, as the SMU monitors

the PPU’s virtual memory space using its own hardware resources, the performance

of the PPU should not be affected, as would most likely be the case with MMU co-

opting (due to having to halt the processor’s execution when co-opting the MMU).

As a result, impacts on system usability should be minimal.

Despite all of the benefits that an SMU with multiple MMUs can provide, a

number of limitations still exist. While having the SMU utilize its own resources may

allow for better PPU performance and fewer modifications to the PPU’s architecture,

the SMU has to undergo a drastic architectural change that may require a large

amount of added complexity to the SMU’s architecture. This may not turn out to

be the case, however, as the SMU may not need to be very powerful for the kinds of

monitoring it will be performing, but it is still a notable limitation nonetheless.

A number of the capabilities provided by the SMU having multiple MMUs are

also dependent on a level of PPU software support. State information, such as the

page directory address of different processes or information regarding what processes

reside on which OS queues, must be explicitly communicated from the PPU to the

SMU. This explicit communication should be kept to a minimum. This is because

explicit communication not only means that the PPU must be aware of the SMU’s

presence, but that some of the SMU’s capabilities may be dependent on the PPU’s
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potentially untrustable software. If not handled in a careful manner, such as the PPU

only explicitly communicating to the SMU when the PPU’s OS is in a known trusted

state, then it will be easer for the SMU to be compromised.

Another limitation that must be considered is that the OS controls the paging

of data that no longer resides in memory. As part of paging is controlled by the

operating system for pages residing in external storage (no longer in main memory),

the OS may have protections to keep data belonging to a currently non-executing

process from being accessed.
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VI. Conclusion

I
n this Chapter, we present the key findings of our research. Additionally, we

describe the research areas we would like to explore in the future.

6.1 Conclusions

Our research focuses on moving security-related monitoring tasks from software

to dedicated hardware in an effort to increase overall system security and usabil-

ity compared to software-based security methods. This is realized via a number of

hardware-based functional primitives that gather and process state information in

ways not previously possible at the hardware-level. These primitives leverage a novel

computing architecture that is based on a contemporary shared memory multipro-

cessing model. In doing this, we are able to break through a number of limitations

imposed by the current computing model, resulting in framework upon which real-

time security policy compliance monitoring can be performed in parallel and for a

wide variety of computing environments. As we show that performing security pol-

icy compliance monitoring in this manner can increase performance, efficiency, and

security over software-based methods, we validate our research hypothesis. The key

findings that allow us to make this claim are presented below.

6.1.1 Improved Time-to-Detect. Our research has shifted security-related

monitoring tasks from software to dedicated hardware. Thus, security monitoring can

be performed in parallel as code executes on the monitored processor. This, combined

with gathering state information at the hardware level, provides for real-time security
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policy compliance monitoring. As a result, our research allows for faster time-to-

detect than software-based methods. Thus, damage caused by malicious events can

be minimized or prevented altogether.

6.1.2 Hardness of the Monitoring System. Software is the primary means

of attacking a system. Therefore, we designed the architecture to tightly couple the

monitoring hardware to the monitored system, while minimizing software coupling as

much as possible. This allows the monitoring hardware to gather context-rich state

information, but do so with a minimal amount of explicit communication from the

monitored system. There are two key benefits that come from this: 1) the attack

surface of the monitoring hardware is decreased, making the monitoring hardware

more secure, and 2) The monitoring hardware can continue to function, albeit possibly

in a diminished capacity, in the event that the monitored system is compromised.

Thus, the monitoring system itself is highly resistent to being compromised.

6.1.3 Displaced Security Workload. Our research shifts the burden of per-

forming security monitoring tasks to dedicated hardware. Thus, security monitoring

can be performed in parallel as code executes on the monitored processor. As a re-

sult, little to no overhead (due to security monitoring) is incurred by the processor

executing the monitored code. This increases the performance of the monitored sys-

tem compared to software-based approaches. Therefore, little to no impact on the

system’s usability occurs.
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6.1.4 Novel Hardware-based Monitoring Techniques. Our architecture al-

lows state information previously not available at the hardware level to be gathered.

This increases the types of inputs available to the monitoring system over previously

proposed hardware-based security monitoring systems. Moreover, this new state in-

formation enables novel monitoring capabilities at the hardware level. We describe

the benefits of such capabilities below.

• Multi-context Monitoring in Hardware: By monitoring the the PID of the cur-

rently executing process, monitors implemented in hardware can now discern

between different processes. This allows hardware-based monitors to be able

to operate in dynamic, multiprogrammed (e.g., general purpose) environments,

rather than be limited to more static (e.g., embedded and application specific)

environments. As a result, we provide an alternative to anomaly detection

(which is prone to false positives) when performing hardware-based monitoring

in more complex computing environments.

• Virtual Memory Introspection: The MMU co-opting and the Multiple MMU

primitives can be used to monitor the virtual memory space of the process

currently executing on the monitored processor. This allows both kernel-level

and user-level processes to be monitored. Such a capability was previously only

available via software-based monitoring techniques, which introduced overhead

and was vulnerable to attack. By monitoring the virtual memory space via
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hardware, the performance, time-to-detect, and monitoring system security is

improved compared to similar software-based methods.

• Monitoring Non-executing Processes: Implementing monitoring hardware using

multiple MMUs enables the monitoring of any process’ virtual memory space;

including the memory space of processes not currently executing (i.e., processes

residing in one of the OS’s waiting queues). This provides completely new se-

curity monitoring capabilities. Such capabilities include, but are not limited to,

ensuring a process is trustable throughout its entire run-time, bad I/O detec-

tion, and run-time deadlock detection - all of which benefit the security-related

monitoring field.

6.1.5 Monitoring System Flexibility. Many of the primitives created through

the course of our research provide complementary monitoring capabilities. Thus, as

the monitoring system (i.e., the SMU) is seen as a black box with respect to the

rest of the system, the monitoring system can consist of a combination of primitives.

As a result, the monitoring system is flexible and allows security to be tailored to a

particular system’s specific security needs.

6.1.6 Monitoring System Extensibility. Since the monitoring system (i.e.,

the SMU) can be viewed as a black box with respect to the rest of the system, any

primitive can be implemented, providing it adheres the guidelines of the architecture.

As a result, the primitives that can be implemented in this architecture are not limited
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to the primitives developed in this research. Thus, new primitives can be developed

in the future to enable new forms of security related monitoring.

6.1.7 Improved Range of Monitoring Granularity. Our primitives can allow

monitoring granularity ranging from the individual instruction level to the process

level. Thus, this research increases the range of monitoring granularity that can

be provided via hardware-based mechanisms. This allows the primitives to provide

security policy compliance monitoring in a broad range of computing environments,

rather than being limited to a single computing environment.

6.2 Future Work

We have determined a number of capabilities that can be provided by the con-

cepts proposed in this research, but that are outside the scope of our primary research

goals. As a result, there are a number of areas we would like to explore in future re-

search efforts. These ares are described below.

6.2.1 Virtual Memory Introspection Implementation. The platform thata

was used for prototyping our systems can implement both PowerPC 405 processors

and Xilinx Microblaze processors. The PowerPC cores contain an MMU, however

they are hardcores and cannot be modified. The Microblaze cores, are softcores,

hence they are modifiable, however they do not contain an MMU of their own. As

a result, we were not able to implement our co-opted MMU or SMU with multiple

MMUs concepts presented in Sections 3.5.4.2 and 3.5.4.3, respectively. Implementing
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such capabilities would greatly benefit from having access to a softcore processor that

contains an MMU. This leaves two options: 1) Gain access to the source code for the

Microblaze processor and modify it to include an MMU, or 2) use a softcore processor

that contains an MMU.

As the Microblaze is based on a Harvard architecture, Option 1 above may be

more difficult as there are separate data and instruction buses. Option 2, however,

may be able to be realized with the Leon3 softcore processor. As mentioned in Section

4.2.1.3, the Leon 3 is a softcore processor with an MMU. As a result, it may be

possible to use the Leon3 processor to prototype our MMU co-opting and multiple

MMU concepts.

6.2.2 Enhanced Debug Registers. Contemporary processors include registers

that are used to monitor a number of memory addresses for debugging purposes. De-

bug registers can typically monitor both addresses and data and can be set to trigger

on varying conditions. As such, this kind of capability may be useful for security

related monitoring tasks. For example, a breakpoint could be set for a particular

address containing a key invariant. The debug registers could then be used to trigger

a signal when the memory address is accessed. Rather than halting the processor,

the triggered breakpoint could be used to signal the SMU to notify it of the event

and have it perform an invariant check. Adding this enhanced debug capability would

most likely not be very difficult as it would consist mostly of tapping into the memory

bus, which we have already shown to work in Section 4.4.2.
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Additionally, many processor architectures only contain a small number of debug

registers (Intel processors have four [26]), however, if using such a capability for

security-related monitoring rather than debugging, it may be desired to have more

of these registers. Instead, 25 or so could be implemented to allow for monitoring a

large number of events that would indicate malicious activity. By doing this, the SMU

would respond to specific events as they happen, rather than periodically checking a

number of locations to see if an invariant has changed. Moreover, these debug registers

could be enhanced to monitor a range of addresses, rather than just a single address.

This would be beneficial as one could monitor over a broad range of addresses, making

it more likely that the event will be detected. This could possibly be helpful for either

detecting previously unencountered malicious activity or for malicious activity that

does not always work on the same memory address.

6.2.3 Forensics Capabilities. The various memory introspection methods

provide for visibility into both the physical and virtual memory spaces. While the

primary goal of such a capability is real-time monitoring of key invariants in order

to detect illegitimate activity, it also could provide a convenient platform for data

forensics capabilities. As such, key portions of monitored code can not only be mon-

itored, but stored as well. This information could then be used at a later time to

analyze attacks and find security holes within the monitored process. This can be ex-

tended to include state information gathered from other system resources other than

memory such as the PC or the process’ PID. Correlating this state information with
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data gathered from a monitored process’ memory may be able to provide for forensics

capabilities not currently available.

6.2.4 Automatic Process Repair. While our memory introspection tech-

niques focus on reading the state of a process’ memory space (physical and virtual)

in hardware, these memory introspection primitives provide the ability to write to

a process’ memory space as well. This could potentially be used for repairing pro-

cesses in the event that they are damaged from an attack. As we are monitoring

state information in realtime, it may even be possible to detect and repair such dam-

age automatically, providing a powerful self-healing capability in real-time. An SMU

containing multiple MMUs, as was presented in Sections 3.5.4.3 and 4.4.6, would be

particularly suited to such a capability since process damage could be repaired and de-

tected while a process resides on the ready, I/O, or waiting queues. However, writing

to a monitored process’ memory space can be dangerous for the monitored process,

as a completely separate process (executing on the SMU) can potentially damage the

monitored process if done incorrectly. As a result, care must be taken so as to not

further damage the monitored process.

6.2.5 Minimum Required Resource Investigation. The implementation of

our primitives was done as a proof of concept. As such, we did not look at resource

usage in terms of area, power, etc. Thus, the primitives are probably using more

resources than are required for the tasks they perform. For example, the SMU may

not need a powerful processor to perform memory introspection. Thus it would be
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interesting to investigate the minimum resource requirements for each capability to

improve efficiency. This would help when integrating our concepts into commercial

designs as chip-area is at a premium. As there are current efforts to move dedicated

coprocessing tasks to the CPU packaging and eventually onto the core itself with

AMD’s Torrenza initiative [44], our security primitives could be one such form of

coprocessing. Moreover, a small portion of a processor could include FPGA fabric to

allow our primitives to be configured directly on the CPU and tailored to a specific

application. Such an application would greatly benefit from determining how such

concepts can be implemented while using resources efficiently.

6.2.6 Scalability: Multiple PPUs per SMU. The architecture we propose

currently allows for one SMU monitoring each PPU in the system. However, the

PPU may not always be executing a monitored process, leaving the SMU unused. As

a result, the SMU may be able to use its resources to monitor other PPUs within

the system that may be executing a monitored process. Having a single SMU service

multiple PPUs would be a more efficient use of resources and serve to minimize the

chip area devoted to SMUs, allowing for more chip resources to be devoted to the

PPUs. While the SMU could potentially be switched to only work with one PPU at a

time, it may be possible for a single SMU to service multiple PPUs simultaneously, so

long as the required hardware primitives are orthogonal to each other. For example,

the PC monitor could be monitoring one PPU, while the memory introspection tasks

could be performed on another PPU. The focus of such research would be the inter-
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connection method between the PPUs and the SMU, as well as the software model of

the SMU itself.

6.2.7 Security Logic Units. Microprocessors are already moving toward

multicore designs and there seem to be no end in sight with Sun Microsystem’s Ultra-

SPARC T1 processor having 8 cores now [54]. Additionally, recent research conducted

by Intel has produced what they are terming as “Tera-scale processors” [21]. These

processors further the current multicore paradigm by integrating a large number (80

cores for the tera-scale prototype) of simple cores in order to increase performance.

All of these cores would need some form of security monitoring, therefore, it may be

possible to abstract away the concept of an SMU, and make each primitive into a type

of security logical unit (SLU) that focuses on a particular type of data processing.

The entire processor would have access to a number of each kind of SLU, similar to

how processor pipelines today have access to a number of multipliers, adders, etc.

Depending on the code executing on the particular core, it could use whatever SLUs

are needed at the particular time for SPCM purposes. Reconfigurable logic could even

be used to provide for varying types and numbers of SLUs depending on the current

application being monitored. This organization of security resources would make it

difficult for the monitoring primitives to remain transparent to the processing cores

being monitored, thus new hardware-based mechanisms would most likely need to be

proposed that could ensure the security and proper operation of the SLUs.
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Appendix A. Implementation Code

A.1 Execution Policy Enforcement Module

A.1.1 MB Trace4mdm top.vhd.

----------------------------------------------------------------------------------

-- Created by: 2Lt Stephen Mott, USAF

-- Create Date: 13:23:25 02/06/2007

-- Design Name: Execution Policy Enforcement Module

-- Module Name: MB_Trace4mdm_top

-- Project Name: mbtrace4projmdm.ise

-- Target Devices: XilinxML310 development board

-- Tool versions: 8.2i

--

-- Description: This is the top-level structural definition of our

-- execution policy enforcement system. It connects

-- the non-executable memory table (noex_mem) and the

-- non-executable memory enable logic (noex_mem_en)

-- to the embedded system containing the PPU (i.e. a

-- microblaze processor) that was created in EDK.

--

-- Dependencies: This module requires the use of the

-- system.xmp from the mb_trace4_int_mdm_test EDK

-- project. Also required are the noex_mem_en.vhd

-- and noex_mem.xco modules.

----------------------------------------------------------------------------------

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use

IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity

MB_Trace4mdm_top is --these are pins that connect to signals on the

ML310 board itself PORT(

fpga_0_RS232_Uart_RX_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

fpga_0_LEDs_8Bit_GPIO_IO_pin : INOUT std_logic_vector(0 to 7);

fpga_0_LCD_OPTIONAL_GPIO_IO_pin : INOUT std_logic_vector(0 to 11);

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin : INOUT std_logic_vector(7 downto 0);

fpga_0_RS232_Uart_TX_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_clk_enable_n_pin : OUT std_logic;
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fpga_0_SysACE_CompactFlash_SysACE_MPA_pin : OUT std_logic_vector(6 downto 0);

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

fpga_0_ORGate_1_Res_pin : OUT std_logic;

fpga_0_ORGate_1_Res_1_pin : OUT std_logic;

fpga_0_ORGate_1_Res_2_pin : OUT std_logic);

end MB_Trace4mdm_top;

--component definitions

architecture Structural of MB_Trace4mdm_top is

--this defines the inputs and outputs of the microblaze system

created in the EDK COMPONENT system PORT(

fpga_0_RS232_Uart_RX_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

microblaze_0_INTERRUPT_pin : IN std_logic;

sys_clk_s_pin : IN std_logic;

fpga_0_LEDs_8Bit_GPIO_IO_pin : INOUT std_logic_vector(0 to 7);

fpga_0_LCD_OPTIONAL_GPIO_IO_pin : INOUT std_logic_vector(0 to 11);

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin : INOUT std_logic_vector(7 downto 0);

fpga_0_RS232_Uart_TX_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_clk_enable_n_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin : OUT std_logic_vector(6 downto 0);

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

fpga_0_ORGate_1_Res_pin : OUT std_logic;

fpga_0_ORGate_1_Res_1_pin : OUT std_logic;

fpga_0_ORGate_1_Res_2_pin : OUT std_logic;

system_clk_pin : OUT std_logic;

microblaze_0_Trace_PC_pin : OUT std_logic_vector(0 to 31));

END COMPONENT;

--these are the pins of the no-ex_mem module

component noex_mem

port (

clka: IN std_logic;

addra: IN std_logic_VECTOR(14 downto 0);

ena: IN std_logic;
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douta: OUT std_logic_VECTOR(0 downto 0));

end component;

-- FPGA Express Black Box declaration for creating the noex_mem

module attribute fpga_dont_touch: string; attribute fpga_dont_touch

of noex_mem: component is "true";

-- Synplicity black box declaration for creating the noex_mem module

attribute syn_black_box : boolean; attribute syn_black_box of

noex_mem: component is true;

--these are the pins of the no-ex_mem_en module COMPONENT

noex_mem_en PORT(

CLK : IN std_logic;

PC_in : IN std_logic_vector(31 downto 15);

Enable : OUT std_logic);

END COMPONENT;

--signals for connecting instantiated components signal CLOCK :

STD_LOGIC; signal MB_INT : STD_LOGIC_VECTOR(0 DOWNTO 0); signal

PC_BITS : STD_LOGIC_VECTOR(31 DOWNTO 0); signal ENABLE_MEM :

STD_LOGIC;

begin --the different components are instantiated and connected below

--instantiation and port mapping of the

--embedded system created using the EDK

system_i: system PORT MAP(

fpga_0_RS232_Uart_RX_pin => fpga_0_RS232_Uart_RX_pin,

fpga_0_RS232_Uart_TX_pin => fpga_0_RS232_Uart_TX_pin,

fpga_0_LEDs_8Bit_GPIO_IO_pin => fpga_0_LEDs_8Bit_GPIO_IO_pin,

fpga_0_LCD_OPTIONAL_GPIO_IO_pin => fpga_0_LCD_OPTIONAL_GPIO_IO_pin,

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin =>

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin,

fpga_0_SysACE_CompactFlash_clk_enable_n_pin =>

fpga_0_SysACE_CompactFlash_clk_enable_n_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin,

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin =>
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fpga_0_SysACE_CompactFlash_SysACE_CEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin =>

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin =>

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin,

fpga_0_ORGate_1_Res_pin => fpga_0_ORGate_1_Res_pin,

fpga_0_ORGate_1_Res_1_pin => fpga_0_ORGate_1_Res_1_pin,

fpga_0_ORGate_1_Res_2_pin => fpga_0_ORGate_1_Res_2_pin,

sys_clk_pin => sys_clk_pin,

sys_rst_pin => sys_rst_pin,

microblaze_0_INTERRUPT_pin => MB_INT(0),

system_clk_pin => CLOCK,

sys_clk_s_pin => CLOCK,

microblaze_0_Trace_PC_pin => PC_BITS);

--instantiation and port mapping of the --noex_mem module

noex_mem_module : noex_mem

port map (

clka => CLOCK,

addra => PC_BITS(14 DOWNTO 0),

ena => ENABLE_MEM,

douta => MB_INT);

--instantiation and port mapping of the --noex_mem_en module

noex_mem_en_module : noex_mem_en PORT MAP(

CLK => CLOCK,

PC_in => PC_BITS(31 DOWNTO 15),

Enable => ENABLE_MEM);

end Structural;

A.1.2 noex mem en.vhd.

----------------------------------------------------------------------------------

-- Created By: 2Lt Stephen Mott, USAF

-- Create Date: 13:37:46 02/06/2007

-- Design Name: Execution Policy Enforcement Module

-- Module Name: noex_mem_en_module - Behavioral

-- Project Name: mbtrace4projmdm.ise

-- Target Devices: XilinxML310 development board

-- Tool versions: 8.2i

--
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-- Description: This module is a behavioral definition of the enable

-- logic for the noex_mem module. As it may be

-- desired that only certain regions of memory may

-- want to be monitored, we created this enable logic

-- to allow monitoring to only occur for particular

-- memory addresses. Thus, any PC within the range,

-- will activate the monitor(i.e. the noex_mem BRAM).

-- Our enable logic currently provides for program

-- counter values below 0x00008000 to enable the

-- noex_mem module.

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity noex_mem_en is

Port (

CLK : in STD_LOGIC; --clock signal input

PC_in : in STD_LOGIC_VECTOR (31 downto 15); --upper 17 bits of

--the microblaze PC

Enable : out STD_LOGIC); --enable signal output

end noex_mem_en;

architecture Behavioral of noex_mem_en is

begin

process(CLK)

begin

if(PC_in = "00000000000000000") then --sets enable signal if PC is below

Enable <= ’1’; --address 0x00008000.

else

Enable <= ’0’;

end if;

end process;

end Behavioral;

A.2 Multi-context Hardware Monitoring

A.2.1 MB PID2 top.vhd.
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----------------------------------------------------------------------------------

-- Created By: 2Lt Stephen Mott, USAF

-- Create Date: 09:01:53 01/24/2007

-- Design Name: Multi-context hardware monitoring

-- Module Name: MB_PID2_top - MB_PID2_Struct

-- Project Name: MB_PID2.ise

-- Target Devices: Xilinx ML310 development board

-- Tool versions: 8.2i

-- Description: This is the top-level structural definition of our Multi-context

-- monitors system. It connects the PID retrieval logic to the

-- embedded system that contains the PPU (i.e. a microblaze

-- processor).

--

-- Dependencies: requires the system.xmp file in the MB_PID2 EDK project and the

-- PID_Logic.vhd file.

--

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity MB_PID2_top is

--these are pins that connect to signals on the ML310 board itself

PORT(

fpga_0_RS232_Uart_RX_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

fpga_0_DDR_CLK_FB : IN std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin :

INOUT std_logic_vector(0 to 3);

fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin :

INOUT std_logic_vector(0 to 31);

fpga_0_LEDs_8Bit_GPIO_IO_pin :

INOUT std_logic_vector(0 to 7);

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin :

INOUT std_logic_vector(7 downto 0);

fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin :
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OUT std_logic_vector(0 to 12);

fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin :

OUT std_logic_vector(0 to 1);

fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin : OUT std_logic_vector(0 to 3);

fpga_0_RS232_Uart_TX_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_clk_enable_n_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin :

OUT std_logic_vector(6 downto 0);

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

fpga_0_ORGate_1_Res_pin : OUT std_logic;

fpga_0_ORGate_1_Res_1_pin : OUT std_logic;

fpga_0_ORGate_1_Res_2_pin : OUT std_logic;

fpga_0_DDR_CLK_FB_OUT : OUT std_logic);

end MB_PID2_top;

--component definitions

architecture MB_PID2_Struct of MB_PID2_top is

--this defines the inputs and outputs of the microblaze system created in the EDK

COMPONENT system

PORT(

fpga_0_RS232_Uart_RX_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

fpga_0_DDR_CLK_FB : IN std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin :

INOUT std_logic_vector(0 to 3);

fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin :

INOUT std_logic_vector(0 to 31);

fpga_0_LEDs_8Bit_GPIO_IO_pin : INOUT std_logic_vector(0 to 7);

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin :

INOUT std_logic_vector(7 downto 0);

fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin : OUT std_logic;
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fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin :

OUT std_logic_vector(0 to 12);

fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin :

OUT std_logic_vector(0 to 1);

fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin : OUT std_logic;

fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin : OUT std_logic_vector(0 to 3);

fpga_0_RS232_Uart_TX_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_clk_enable_n_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin :

OUT std_logic_vector(6 downto 0);

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

fpga_0_ORGate_1_Res_pin : OUT std_logic;

fpga_0_ORGate_1_Res_1_pin : OUT std_logic;

fpga_0_ORGate_1_Res_2_pin : OUT std_logic;

fpga_0_DDR_CLK_FB_OUT : OUT std_logic;

--the below pins are the pins used for our external logic to

--tap into the embedded system created in the EDK

Int_ProcessA_pin : IN std_logic; --Interrupt for PID A

Int_ProcessB_pin : IN std_logic; --Interrupt for PID B

CLK_OUT_pin : OUT std_logic; --system Clock

RST_OUT_pin : OUT std_logic; --system reset

OPB_RNW_pin : OUT std_logic; --OPB read/write signal

OPB_ABus_pin : OUT std_logic_vector(0 to 31); --OPB address lines

OPB_DBus_pin : OUT std_logic_vector(0 to 31); --OPB data lines

Trace_PC_pin : OUT std_logic_vector(0 to 31)); --microblaze program counter

END COMPONENT;

--this defines the inputs and outputs of the logic used to retrieve the PID

COMPONENT PID_LOGIC

PORT(

ADDR_IN : IN std_logic_vector(0 to 31);

DATA_IN : IN std_logic_vector(0 to 31);

RNW_IN : IN std_logic;

CLK_IN : IN std_logic;

RST_IN : IN std_logic;

INT_A_OUT : OUT std_logic;
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INT_B_OUT : OUT std_logic);

END COMPONENT;

--connection signals for instantiated components

SIGNAL CLOCK : std_logic;

SIGNAL INT_A : std_logic;

SIGNAL INT_B : std_logic;

SIGNAL ADDR : std_logic_vector(0 to 31);

SIGNAL DATA : std_logic_vector(0 to 31);

SIGNAL RESET : std_logic;

SIGNAL RNW : std_logic;

begin --the different components are instantiated and connected below

--instantiation and port mapping of the

--embedded system created using the EDK

system_i : system

PORT MAP(

fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin,

fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin =>

fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin,

fpga_0_RS232_Uart_RX_pin => fpga_0_RS232_Uart_RX_pin,
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fpga_0_RS232_Uart_TX_pin => fpga_0_RS232_Uart_TX_pin,

fpga_0_LEDs_8Bit_GPIO_IO_pin => fpga_0_LEDs_8Bit_GPIO_IO_pin,

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin =>

fpga_0_SysACE_CompactFlash_SysACE_CLK_pin,

fpga_0_SysACE_CompactFlash_clk_enable_n_pin =>

fpga_0_SysACE_CompactFlash_clk_enable_n_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPA_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPD_pin,

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin =>

fpga_0_SysACE_CompactFlash_SysACE_CEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin =>

fpga_0_SysACE_CompactFlash_SysACE_OEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin =>

fpga_0_SysACE_CompactFlash_SysACE_WEN_pin,

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin =>

fpga_0_SysACE_CompactFlash_SysACE_MPIRQ_pin,

fpga_0_ORGate_1_Res_pin => fpga_0_ORGate_1_Res_pin,

fpga_0_ORGate_1_Res_1_pin => fpga_0_ORGate_1_Res_1_pin,

fpga_0_ORGate_1_Res_2_pin => fpga_0_ORGate_1_Res_2_pin,

fpga_0_DDR_CLK_FB => fpga_0_DDR_CLK_FB,

fpga_0_DDR_CLK_FB_OUT => fpga_0_DDR_CLK_FB_OUT,

sys_clk_pin => sys_clk_pin,

sys_rst_pin => sys_rst_pin,

Int_ProcessA_pin => INT_A,

Int_ProcessB_pin => INT_B,

CLK_OUT_pin => CLOCK,

RST_OUT_pin => RESET,

OPB_RNW_pin => RNW,

OPB_ABus_pin => ADDR,

OPB_DBus_pin => DATA,

Trace_PC_pin => open); --"Trace_PC_pin" is included to provide for

--the connection of monitoring logic that may be

--added to this project in the future. Currently,

--it is left unconnected.

--instantiation and port mapping of the

--PID retrieval logic

PID_LOGIC_inst : PID_LOGIC

PORT MAP(

ADDR_IN => ADDR,

DATA_IN => DATA,
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RNW_IN => RNW,

CLK_IN => CLOCK,

RST_IN => RESET,

INT_A_OUT => INT_A,

INT_B_OUT => INT_B);

end MB_PID2_Struct;

A.2.2 PID LOGIC.vhd.

----------------------------------------------------------------------------------

-- Created by: 2Lt Stephen Mott, USAF

-- Create Date: 14:10:33 01/24/2007

-- Design Name: Multi-context Hardware Monitoring

-- Module Name: PID_LOGIC - PID_LOGIC_Struct

-- Project Name: MB_PID2.ise

-- Target Devices: ML310 development board

-- Tool versions: 8.2i

--

-- Description: This module is a behavioral definition of the operation of the

-- logic that captures the

-- the PID from the PPU. When the PID is captured it is compared to

-- see if it matches one of the "stored" PIDs. If a match occurs,

-- then the corresponding interrupt signal is triggered. This module

-- only can output two different interrupts, so only two different

-- contexts can be monitored. This is not only a limitation of how we

-- have coded this module, but also a limitation on we have

-- implemented the embedded system in EDK (i.e. we designed the

-- interrupt controller to allow only 2 interrupts. If the PID does

-- not match one of the "stored" PIDs, then no interrupt is

-- triggered. This logic also stores the current PID, so subsequent

-- accesses to other memory addresses will not affect the captured

-- PID of the of the "currently executing process". The PIDs that

-- trigger the interrupts can be changed by changing the "pid1" and

-- "pid2" variables.

--

-- Dependencies: This file is required by MB_PID2_top.vhd module in the

-- MB_PID2.ise project

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
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entity PID_LOGIC is

PORT(

ADDR_IN : IN std_logic_vector(0 to 31); --OPB address lines

DATA_IN : IN std_logic_vector(0 to 31); --OPB data lines

RNW_IN : IN std_logic; --OPB read/write signal

CLK_IN : IN std_logic; --system clock

RST_IN : IN std_logic; --system reset

INT_A_OUT : OUT std_logic; --PID A interrupt

INT_B_OUT : OUT std_logic --PID B interrupt

);

end PID_LOGIC;

architecture PID_LOGIC_Behavior of PID_LOGIC is

SIGNAL DATA_VAL : std_logic_vector(31 downto 0);

SIGNAL COMP_VAL : std_logic_vector( 1 downto 0);

begin

Capture : Process(RST_IN, CLK_IN, RNW_IN)

--address where the PID resides in memory

VARIABLE pid_addr : std_logic_vector(31 downto 0) := X"30000001";

--temp storage for the PID on the OPB data bus

VARIABLE pid_val : std_logic_vector(31 downto 0) := X"00000000";

--PID of the first process to be monitored

VARIABLE pid1 : std_logic_vector(31 downto 0) := X"30001000";

--PID of the second process to be monitored

VARIABLE pid2 : std_logic_vector(31 downto 0) := X"30002000";

Begin

IF (RST_IN = ’0’)

THEN

pid_VAL := X"00000000";

INT_A_OUT <= ’0’;

INT_B_OUT <= ’0’;

ELSIF (CLK_IN = ’1’ AND CLK_IN’LAST_VALUE = ’0’ AND RNW_IN = ’0’ AND

ADDR_IN = pid_addr)
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THEN

pid_val := DATA_IN; --captures PID if a PID is written to memory

END IF;

--interrupt control logic

IF (pid_val = pid1) then --triggers interrupt A if PID matches pid1

INT_A_OUT <= ’1’;

INT_B_OUT <= ’0’;

ELSIF (pid_val = pid2) then --triggers interrupt B if PID matches pid2

INT_A_OUT <= ’0’;

INT_B_OUT <= ’1’;

ELSE

INT_A_OUT <= ’0’; --no interrupts triggered if PID does not match

INT_B_OUT <= ’0’; --pid1 or pid2

END IF;

End process Capture;

end PID_LOGIC_Behavior;
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Appendix B. Development Software Tutorials

B.1 Embedded Linux Tutorial

This section presents a guide for creating a relatively simple embedded design

using the XUPV2P development board and the Xilinx development environment (ver-

sion 8.1i). We will discuss preparing the the environment, creating a reference system

using the Xilinx Base System Builder, using Platform Studio to modify the design,

and using a CF card to load code when turning the system on. The goal of this

section is to provide the basic knowledge needed to create, modify, and implement

an embedded design quickly in order to familiarize the reader with the development

environment. If any problems are encountered that the Tutorial or Troubleshooting

sections do not cover, please refer to [63,64].

B.1.1 Initializing The Environment. The first thing that must be done

is to make sure that all the required software tools are present. Both Xilinx ISE

Foundation 8.1i and EDK 8.1i must be installed on a Windows XP-based machine.

Although it is probably not necessary, it is also a good idea to download the most

recent IPCores updates and service packs. These can be found at the Xilinx website.

Finally, the design repository that comes with the XUPV2P board must be copied

to any location on the hardrive. The repository files are responsible for making the

Xilinx software aware of all of the features of the XUPV2P development board so
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that they can be configured. The repository directory can be found on the CD that

came with the XUPV2P.

B.1.2 The Base System Builder. The Base System Builder, known as the

BSB hereafter, is a design tool that is part of the EDK Platform Studio which provides

a quick, semi-automated method for creating and implementing embedded designs.

The BSB has certain limitations, however, that prevent it from being able to create

multi-processor designs and adding additional IPCores to a design. This limitation

will be addressed in the next section. Despite such limitations, the BSB provides a

convenient and efficient means to build a working reference embedded design that can

later be built upon.

In order to access the BSB, you must run the EDK Platform Studio. This can

be found under the EDK directory of the Windows “Start” menu. Upon starting

Platform Studio, you will be greeted with a prompt asking what you would like

to do. You can use the BSB, create a blank project, or open an already existing

project. Select “Base System Builder wizard” and click “OK”. A prompt will be

displayed asking where you would like to save the EDK project file and if you would

like to include a design repository. Choose a desired path and project name to store

your project information, making sure there are no spaces in the path name as this

can cause problems later when trying to implement your design. Also select the

”Use Repository Paths” checkbox and point the BSB to the “lib” folder within the

directory you copied the XUPV2P repository files to earlier. The next window asks if
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you would like to create a new design or open an exiting .bsb design. Select the create

new design option. A menu will then open asking what the target development board

is. Use the dropdown menus to choose the Xilinx XUP Virtex-II Pro Development

System Revision C board and click “Next”.

The next several menus are used to choose what components of the development

board you would like to implement in your design. Select the check boxes for the

following components and use defaults unless otherwise stated:

• 1. PowerPC Core (w/ Cache Setup Enabled)

• 2. RS232 Uart 1

• 3. SysACE CompactFlash 1 (use interrupt)

• 3. LEDs 4Bit

• 4 DIPSWs 4Bit

• 5. PushButtons 5Bit

• 6. DDR RAM corresponding to your hardware configuration

• 7. plb bram if cntlr 1 (128KB)

Once the hardware components have been chosen, you can choose 2 tests to in-

clude in your design: 1) a memory test and 2) a peripheral selftest. Select both tests

as you will be able to choose which test to implement later. Also select RS232 Uart 1

from both the STDIN and STDOUT dropdown menus and then click “Next”. The

next prompt will allow you to configure what memory location on the development
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board your programs will be run from. For the memory test, select the plb bramif cntlr 1

for all dropdown menus. For the peripheral test, select DDR SDRAM .̇. if you have

installed RAM, or plb bram if cntlr 1 if you are not using RAM. Click “Next”.

A summary of the components and their corresponding addresses you have

added o your design will be displayed. Look this over and make sure you made

no mistakes, selecting “Back” if you have to change anything. When done, select

“Generate”. Now is a tricky part. If you select the Platform Studio window and look

at the Console Window at the bottom of the screen, you will see numerous “Unknown

DIR value UNKNOWN” errors in the *.mhs file. This must be fixed before you select

”Finish”. In order to do this, navigate to the directory where you saved the project file

to earlier. This directory now contains number of new directories and configuration

files to tell the EDK how to create the bitstream that will be used to configure the

FPGA based on the components you selected earlier. Open the system.mhs file using

a simple text editor like notepad. Towards the top of the .mhs file there will be 7

“PORT” variables with the “DIR” attribute initialized to “UNKNOWN”. Comment

out these lines of code by placing a “#” at the beginning of each line and save the

file and exit. Now go back to the BSB wizard and select “Finish”. The required files

will then be checked for errors and a new menu will open giving you a choice of what

to do next. Make sure that the development board is powered on and the the USB

cable connecting the board to the windows box is connected. Select the “Download

the design to the board and test it” option. This will synthesize the design, build the
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memory test, and then download them to the board. This may take anywhere from

5 to 10 minutes depending on your system.

Now that the design has been created and downloaded to the board it is time

to see if it works. Use a serial cable to connect the board’s serial port to the machine

with Platforma Studio on it. Open a hyperterminal window and configure it to 9600

baud, 8 data bits, no parity, 1 stop bit, no flow control, and to the serial ports COM

port. Press the restart button on the board. If all goes well you should see something

in the hyperterminal window. If using RAM, you should see a number of tests. If

the any result of these test failed, you either selected the wrong RAM option when

configuring your design or you need to try using different RAM. If you are not using

RAM, and hence are using plb bram if cntlr 1, all you should see is “entering main”

followed by “exiting main”. This is because you cannot test the memory where the

memory test is actually residing.

B.1.3 Platform Studio. Platform Studio is the heart of the development

environment. Once the BSB has been completed, the Platform Studio interface will

be updated to reflect your project. On the left side of Platform studio are three

tabs: Project, Applications, and IP Catalog. The project tab lists the project files,

general options, and reference files. These should not need to be altered in any way.

The applications tab displays which programs are associated with your project and

allows you to select which program to load to the board, view source code, and modify

program attributes like the linker script which will be important later. The IP catalog
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conveniently lists all of the IP cores that can be loaded into a design and allows you

to do so.

The right window of Platform Studio is your main view window. This is where

your system assembly and overall block diagram of your design can be viewed. The

system assembly tab provides information on how all of the IPcores are linked together

to form your design. You can view this from the bus interface, port, or memory address

perspectives by selecting the appropriate radio button at the top of the tab. You can

modify names, links, and hardware addresses in these perspectives as well. The block

diagram will not be displayed until your design has been compiled. The block diagram

just serves as a convenient means to see your design’s configuration. You should take

a moment to explore the Platform Studio GUI in order to familiarize yourself with it.

In order to run the peripheral selftest, it must be selected as the application

to run and be compiled. To do this, click on the “Applications” tab. Right click

on the TestApp Memory project and uncheck “Mark to initial BRAMs”. Next, right

click on the TestApp Peripheral and select “Mark to initialize BRAMs”. This will set

the peripheral selftest as the project to download to the board. If using RAM, right

click on “TestApp Perpheral” and select “Build Project”. If using plb bram if cntlr 1

then right click “TestApp Peripheral” and select “Set Compiler Options”. Under the

“Environment” tab in the window that pops up, select the “Use default Linker Script”

checkbox. Set the Program start address to “0x00000200”, and the stack and the heap

sizes both to “400” and click “OK”. Now right click the peripheral selftest project and

select “Build Project”. Check the console window to ensure that there were no errors
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during build. Now select the “Device Configuration” menu at the top of the Platform

Studio Window and choose “Download Bitstream”. When it is done downloading,

go back to your hyperterminal and press the reset button on the development board.

You should see a tests for the SysACE, LEDS, etc. All test should pass except for

the SysACE since a CF card is not plugged in. Also, you can change the dipswitch

configuration and hold the push-buttons on the development board while resetting

the development board to see different values returned during the selftest.

B.1.4 Compact Flash and SysACE. While a compact flash card is not

required to get an embedded system up and running, using one has many advantages

but doing so is not necessarily straightforward. First, the XUPV2P board is very

particular about the file system of the CF card, thus it must be properly formatted.

In order to do this, a Windows version of mkdosfs.exe is needed. This can be found

easily by doing an internet search. After downloading mkdosfs.exe, place it in an

easily accessible directory. Make sure the CF card is attached to the machine using a

CF card reader. Open a dos command prompt and navigate to directory containing

mkdosfs.exe and type the following command:

“mkdosfs -s 64 -F 16 -R 1 X:”

where X: is the drive letter of the compact flash card. This will format the CF card

using a FAT16 filesystem with 64 sectors per cluster and 1 reserved sector.
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Now that the CF card is ready, the SysACE file that will go on the CF card is

to be generated. First the GenACE.opt file must be created. Create a new document

in notepad and enter the following:

-jprog
-board user
-target ppc hw
-hw implementation/download.bit
-elf TestApp Peripheral/executable.elf
-configdevice devicenr 1 idcode0x1127e093 irlength 14 partname xc2vp30
-debugdevice devicenr 1cpunr 1
-ace system.ace

Save the file as “GenACE.opt” in the project directory. Next, open a cygwin shell

by selecting the “Launch EDK shell.̇.” from the “Project” dropdown menu in Plat-

form studio. In the shell, navigate to your project directory and type the following

command:

“xmd -tcl genace.tcl -opt GenACE.opt”

This will cerate a file named system.ace in the project directory. Copy this file to

the CF card that was formatted earlier and insert it into the CF card slot on the

development board (make sure the power is off). Now turn the board on. If all has

gone correctly, the ACE LED on the board should be solid green, rather than blinking

red. Also, the peripheral selftest should have executed with similar results to when it

was run previously. The only difference should be that the SysACE test will now be

passed.
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B.2 Troubleshooting

In this section we cover the problems that were encountered over the course of our

development thus far. Although this is not meant to be all inclusive, it is a convenient

place to begin to find a solution, and it may shed some light on a similar problem you

may be encountering.

B.2.1 Development Environment.

• Q1. Why does the BSB return an error when I try to tell it where to store the

project?

• A1. While the BSB asks for a directory, you must also provide a name for your

EDK project. Also, remember to make sure that the filename and path do not

have any spaces in them.

• Q2. I just recompiled my software and now it freezes in the middle of execution.

What should I do?

• A2. This can especially be if a problem if you chose to store your program in

BRAM. Make sure that your linker is set to use the ”default linker script” and

that the program start address is above 0x00000100 to avoid overriding the in-

terrupt vector jump table. Also, since BRAM is at 128KB at its maximum, its

addresses ranges from 0x00000000 to 0x00020000. Thus make certain that the

size of your stack and heap are small enough to not exceed the 128KB limit after

you account for your program size. Note: Depending on how you configured
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your board, you may have less than 128KB of BRAM, so keep track of your

memory address range accordingly.

• Q3. Why can’t I generate a system.ace file? It keeps exiting on an error. /item

A3. make sure that there are no spaces in any of your paths to files that may

be being used by the system ace utility. This includes the ”My Documents”

folder, so you can not use that to store your project information.

• Q4. The BSB returns an error when I try to ”Finish” the wizard. What can I

do?

• A4. For some reason, when using the XUPV2P development board and the

BSB, it will try to initialize some variables within the project’s .mhs file that

are not there. This causes the .mhs file to cause the final build script to crash.

Thus, before clicking ”Finish” in the BSB, open the .mhs file in your projects

directory, and comment out the lines causing the problem. To figure out what

lines you need to comment, check the Console Window of the Platform Studio.

This window should report what lines are causing the problem.

B.2.2 General Linux.

• Q1. When running certain commands in linux, I get a permission denied mes-

sage. What should I do?
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• A1. This error is due to your permissions in linux. There are a number of

commands that can change either the folder permissions - such as chmod, chgrp,

and chown - or your user’s permission level - such as gpasswd. Information on

all such commands can easily be found on the internet. Experiment with these

commands to learn them as they will all be very handy. Alternatively, you can

use the “su-” command to switch to root privileges if you have root access, but

this can be dangerous. You must be a member of group “wheel”s to be able to

do this.

B.2.3 Embedded Linux Installation.

• Q1. While creating the crosscompiler the command shell returns an error when

using the “setenv” command.

• A1. This depends on the shell you are using. Replace “setenv” with “export”.

• Q2. When trying to download the Linux sources using bitmover, I get an error

saying that it cannot find sfio.sh. I see a sfio.sh in the bitmover directory,

however. What should I do?

• A2. you need to temporarily add your bitmover directory to your execution

path. This can be done by typing, “PATH=¡bitmover directory path¿:$PATH”,

in the console.

168



• Q3. When I try to run the mkrootfs.sh script, all the directories are created,

but no system programs have been installed. Why is busy box not working?

• A3. The problem is not with busybox itself; it is with the script. The mk-

rootfs.sh script has a busy box directory variable about 80to where you have

installed busybox to.

• Q4. I just formatted and partitioned my CF card and put the .ace file and root

file system on it. Now linux won’t boot up at all at system power-on anymore.

• A4. As the XUPV2P is particular about how the CF card is partitioned, the

fdisk formatter messed it when you made the boot partition. To fix this, first,

with all three partitions still on the CF card, use the process from the Tutorial

section to format the card. The go back into fdsk on the linux box and create

the swap and root partitions again. Make sure not to use fdsik to make the

boot partition. Do, however, make the boot partition as bootable. Now copy

the root filesystem back onto the root partition. Place the CF card in the CF

card slot and power the system on.

• Q5. Linux starts and a login prompt appears. When I try to login as root, it

returns me back to another login prompt.
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• A5. Make sure that the force dedicated serial console in the busybox config is

not selected. Also, make sure that you have chosen a shell (the ash shell is very

close to the bash shell) in the busybox config.
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